HyperAI
HyperAI超神経
ホーム
プラットフォーム
ドキュメント
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
利用規約
プライバシーポリシー
日本語
HyperAI
HyperAI超神経
Toggle Sidebar
サイトを検索…
⌘
K
Command Palette
Search for a command to run...
プラットフォーム
ホーム
SOTA
セマンティックセグメンテーション
Semantic Segmentation On Cityscapes
Semantic Segmentation On Cityscapes
評価指標
Mean IoU (class)
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Mean IoU (class)
Paper Title
VLTSeg
86.4
Strong but simple: A Baseline for Domain Generalized Dense Perception by CLIP-based Transfer Learning
MetaPrompt-SD
86.2
Harnessing Diffusion Models for Visual Perception with Meta Prompts
InternImage-H
86.1%
InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions
HS3-Fuse
85.8%
HS3: Learning with Proper Task Complexity in Hierarchically Supervised Semantic Segmentation
InverseForm
85.6%
InverseForm: A Loss Function for Structured Boundary-Aware Segmentation
ViT-Adapter-L (Mask2Former, BEiT pretrain)
85.2%
Vision Transformer Adapter for Dense Predictions
SERNet-Former
84.83
SERNet-Former: Semantic Segmentation by Efficient Residual Network with Attention-Boosting Gates and Attention-Fusion Networks
Depth Anything
84.8%
Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data
HRNetV2 + OCR +
84.5%
Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation
EfficientPS
84.21%
EfficientPS: Efficient Panoptic Segmentation
Panoptic-DeepLab
84.2%
Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation
HRNetV2 + OCR (w/ ASP)
83.7%
Segmentation Transformer: Object-Contextual Representations for Semantic Segmentation
DCNAS(coarse + Mapillary)
83.6%
DCNAS: Densely Connected Neural Architecture Search for Semantic Image Segmentation
Euclidean Frank-Wolfe CRFs (backbone: DeepLabv3+)(coarse)
83.6%
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond
ResNeSt200 (Mapillary)
83.3%
ResNeSt: Split-Attention Networks
GALDNet(+Mapillary)++
83.3%
Global Aggregation then Local Distribution in Fully Convolutional Networks
HANet (Height-driven Attention Networks by LGE A&B)(coarse)
83.2%
Cars Can't Fly up in the Sky: Improving Urban-Scene Segmentation via Height-driven Attention Networks
kMaX-DeepLab (ConvNeXt-L, fine only)
83.2%
kMaX-DeepLab: k-means Mask Transformer
SegFormer (MiT-B5, Mapillary)
83.1%
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
MRFM(coarse)
83.0%
Multi Receptive Field Network for Semantic Segmentation
0 of 105 row(s) selected.
Previous
Next
Semantic Segmentation On Cityscapes | SOTA | HyperAI超神経