Prompt Engineering On Imagenet R
評価指標
Top-1 accuracy %
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
比較表
モデル名 | Top-1 accuracy % |
---|---|
maple-multi-modal-prompt-learning | 76.98 |
prompt-pre-training-with-twenty-thousand-1 | 77.9 |
learning-hierarchical-prompt-with-structured | 77.38 |
consistency-guided-prompt-learning-for-vision | 77.51 |
self-regulating-prompts-foundational-model | 77.80 |
conditional-prompt-learning-for-vision | 76.18 |
learning-transferable-visual-models-from | 73.96 |
hpt-hierarchically-prompting-vision-language | 77.52 |
mmrl-multi-modal-representation-learning-for | 77.53 |