HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
Point Cloud Registration
Point Cloud Registration On 3Dmatch Benchmark
Point Cloud Registration On 3Dmatch Benchmark
評価指標
Feature Matching Recall
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Feature Matching Recall
Paper Title
Repository
D3Feat-Pred
95.8
D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features
3DSmoothNet
94.7
The Perfect Match: 3D Point Cloud Matching with Smoothed Densities
PPF-FoldNet
71.8
PPF-FoldNet: Unsupervised Learning of Rotation Invariant 3D Local Descriptors
D3Feat-rand
95.3
D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features
IMFNet
98.6
IMFNet: Interpretable Multimodal Fusion for Point Cloud Registration
FCGF + RANSAC
85
Fully Convolutional Geometric Features
MS-SVConv
98.4
3D Point Cloud Registration with Multi-Scale Architecture and Unsupervised Transfer Learning
DIP
94.8
Distinctive 3D local deep descriptors
FPFH + RANSAC
44.2
Fast Point Feature Histograms (FPFH) for 3D Registration
SpinNet (no code published as of Dec 15 2020)
97.6
SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration
3DMatch + RANSAC
66.8
3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions
GeDi (no code published as of May 27 2021)
97.9
Learning general and distinctive 3D local deep descriptors for point cloud registration
DIP + Point-TnT
96.8
Points to Patches: Enabling the Use of Self-Attention for 3D Shape Recognition
LMVD
97.5
End-to-End Learning Local Multi-view Descriptors for 3D Point Clouds
PPFNet
62.3
PPFNet: Global Context Aware Local Features for Robust 3D Point Matching
0 of 15 row(s) selected.
Previous
Next