HyperAI超神経

Panoptic Segmentation On Mapillary Val

評価指標

PQ
PQst
PQth
mIoU

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

モデル名
PQ
PQst
PQth
mIoU
Paper TitleRepository
Panoptic-DeepLab (SWideRNet-(1, 1, 4.5), multi-scale)44.851.939.360.0Scaling Wide Residual Networks for Panoptic Segmentation-
EfficientPS40.6---EfficientPS: Efficient Panoptic Segmentation
Panoptic FCN* (ResNet-FPN)36.9-32.9-Fully Convolutional Networks for Panoptic Segmentation
OneFormer (DiNAT-L, single-scale)46.754.940.561.7OneFormer: One Transformer to Rule Universal Image Segmentation
Panoptic-DeepLab (X71)40.5---Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation
JSIS-Net (ResNet-50)17.6---Panoptic Segmentation with a Joint Semantic and Instance Segmentation Network-
Panoptic FCN* (ResNet-50-FPN)-42.3--Fully Convolutional Networks for Panoptic Segmentation
AdaptIS (ResNeXt-101)40.3--56.8AdaptIS: Adaptive Instance Selection Network
Axial-DeepLab-L (multi-scale)41.151.333.458.4Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation
HRNet-OCR (Hierarchical Multi-Scale Attention)17.6---Hierarchical Multi-Scale Attention for Semantic Segmentation
Panoptic FCN* (Swin-L, single-scale)45.752.140.8-Fully Convolutional Networks for Panoptic Segmentation
OneFormer (ConvNeXt-L, single-scale)46.454.040.661.6OneFormer: One Transformer to Rule Universal Image Segmentation
Mask2Former + Intra-Batch Supervision (ResNet-50)42.252.034.9-Intra-Batch Supervision for Panoptic Segmentation on High-Resolution Images
0 of 13 row(s) selected.