HyperAI
HyperAI超神経
ホーム
プラットフォーム
ドキュメント
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
利用規約
プライバシーポリシー
日本語
HyperAI
HyperAI超神経
Toggle Sidebar
サイトを検索…
⌘
K
Command Palette
Search for a command to run...
プラットフォーム
ホーム
SOTA
パノプティックセグメンテーション
Panoptic Segmentation On Ade20K Val
Panoptic Segmentation On Ade20K Val
評価指標
AP
PQ
mIoU
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
AP
PQ
mIoU
Paper Title
OneFormer (InternImage-H, emb_dim=256, single-scale, 896x896)
40.2
54.5
60.4
OneFormer: One Transformer to Rule Universal Image Segmentation
OpenSeed(SwinL, single scale, 1280x1280)
-
53.7
-
A Simple Framework for Open-Vocabulary Segmentation and Detection
OneFormer (DiNAT-L, single-scale, 1280x1280, COCO-Pretrain)
-
53.4
58.9
OneFormer: One Transformer to Rule Universal Image Segmentation
X-Decoder (Davit-d5, Deform, single-scale, 1280x1280)
38.7
52.4
59.1
Generalized Decoding for Pixel, Image, and Language
OneFormer (DiNAT-L, single-scale, 1280x1280)
37.1
51.5
58.3
OneFormer: One Transformer to Rule Universal Image Segmentation
OneFormer (Swin-L, single-scale, 1280x1280)
37.8
51.4
57.0
OneFormer: One Transformer to Rule Universal Image Segmentation
kMaX-DeepLab (ConvNeXt-L, single-scale, 1281x1281)
-
50.9
55.2
kMaX-DeepLab: k-means Mask Transformer
OneFormer (DiNAT-L, single-scale, 640x640)
36.0
50.5
58.3
OneFormer: One Transformer to Rule Universal Image Segmentation
OneFormer (ConvNeXt-XL, single-scale, 640x640)
36.3
50.1
57.4
OneFormer: One Transformer to Rule Universal Image Segmentation
OneFormer (ConvNeXt-L, single-scale, 640x640)
36.2
50.0
56.6
OneFormer: One Transformer to Rule Universal Image Segmentation
OneFormer (Swin-L, single-scale, 640x640)
35.9
49.8
57.0
OneFormer: One Transformer to Rule Universal Image Segmentation
X-Decoder (L)
35.8
49.6
58.1
Generalized Decoding for Pixel, Image, and Language
DiNAT-L (Mask2Former, 640x640)
35.0
49.4
56.3
Dilated Neighborhood Attention Transformer
kMaX-DeepLab (ConvNeXt-L, single-scale, 641x641)
-
48.7
54.8
kMaX-DeepLab: k-means Mask Transformer
Mask2Former (Swin-L)
34.2
48.1
54.5
Masked-attention Mask Transformer for Universal Image Segmentation
Mask2Former (Swin-L + FAPN, 640x640)
33.2
46.2
55.4
Masked-attention Mask Transformer for Universal Image Segmentation
kMaX-DeepLab (ResNet50, single-scale, 1281x1281)
-
42.3
45.3
kMaX-DeepLab: k-means Mask Transformer
kMaX-DeepLab (ResNet50, single-scale, 641x641)
-
41.5
45.0
kMaX-DeepLab: k-means Mask Transformer
Mask2Former (ResNet-50, 640x640)
-
39.7
-
Masked-attention Mask Transformer for Universal Image Segmentation
Panoptic-DeepLab (SwideRNet)
-
37.9
50
Masked-attention Mask Transformer for Universal Image Segmentation
0 of 22 row(s) selected.
Previous
Next
Panoptic Segmentation On Ade20K Val | SOTA | HyperAI超神経