HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
Node Classification
Node Classification On Wisconsin
Node Classification On Wisconsin
評価指標
Accuracy
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Accuracy
Paper Title
Repository
HDP
88.82 ± 3.40
Heterophilous Distribution Propagation for Graph Neural Networks
-
FAGCN
79.61 ± 1.58
Beyond Low-frequency Information in Graph Convolutional Networks
Gen-NSD
89.21 ± 3.84
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
H2GCN-RARE (λ=1.0)
90.00±2.97
GraphRARE: Reinforcement Learning Enhanced Graph Neural Network with Relative Entropy
-
ACM-GCN+
88.43 ± 2.39
Revisiting Heterophily For Graph Neural Networks
LHS
88.32±2.3
Refining Latent Homophilic Structures over Heterophilic Graphs for Robust Graph Convolution Networks
-
H2GCN-1
84.31 ± 3.70
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
GloGNN
87.06±3.53
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
GloGNN++
88.04±3.22
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
M2M-GNN
89.01 ± 4.1
Sign is Not a Remedy: Multiset-to-Multiset Message Passing for Learning on Heterophilic Graphs
NLGAT
56.9 ± 7.3
Non-Local Graph Neural Networks
ACM-SGC-2
86.47 ± 3.77
Revisiting Heterophily For Graph Neural Networks
GCNH
-
GCNH: A Simple Method For Representation Learning On Heterophilous Graphs
DJ-GNN
-
Diffusion-Jump GNNs: Homophiliation via Learnable Metric Filters
ACM-SGC-1
86.47 ± 3.77
Revisiting Heterophily For Graph Neural Networks
TE-GCNN
87.45 ± 3.70
Transfer Entropy in Graph Convolutional Neural Networks
Geom-GCN-I
58.24
Geom-GCN: Geometric Graph Convolutional Networks
FSGNN (3-hop)
88.43±3.22
Improving Graph Neural Networks with Simple Architecture Design
H2GCN + UniGAP
87.73 ± 4.8
UniGAP: A Universal and Adaptive Graph Upsampling Approach to Mitigate Over-Smoothing in Node Classification Tasks
LINKX
75.49 ± 5.72
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods
0 of 63 row(s) selected.
Previous
Next