HyperAI
HyperAI超神経
ホーム
プラットフォーム
ドキュメント
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
利用規約
プライバシーポリシー
日本語
HyperAI
HyperAI超神経
Toggle Sidebar
サイトを検索…
⌘
K
Command Palette
Search for a command to run...
プラットフォーム
ホーム
SOTA
ノード分類
Node Classification On Coauthor Physics
Node Classification On Coauthor Physics
評価指標
Accuracy
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Accuracy
Paper Title
NCSAGE
98.69 ± 0.26
Clarify Confused Nodes via Separated Learning
NCGCN
98.63 ± 0.24
Clarify Confused Nodes via Separated Learning
GCN
97.46 ± 0.10
Classic GNNs are Strong Baselines: Reassessing GNNs for Node Classification
3ference
97.22%
Inferring from References with Differences for Semi-Supervised Node Classification on Graphs
CoLinkDist
97.05%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
GNNMoE(GAT-like P)
97.05±0.19
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
GNNMoE(GCN-like P)
97.03±0.13
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
LinkDistMLP
96.91%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
Exphormer
96.89±0.09%
Exphormer: Sparse Transformers for Graphs
LinkDist
96.87%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
CoLinkDistMLP
96.87%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
GNNMoE(SAGE-like P)
96.81±0.22
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
GraphMix (GCN)
94.49 ± 0.84
GraphMix: Improved Training of GNNs for Semi-Supervised Learning
DAGNN (Ours)
94
Towards Deeper Graph Neural Networks
0 of 14 row(s) selected.
Previous
Next
Node Classification On Coauthor Physics | SOTA | HyperAI超神経