HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
Node Classification
Node Classification On Coauthor Cs
Node Classification On Coauthor Cs
評価指標
Accuracy
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Accuracy
Paper Title
Repository
HH-GCN
94.71%
Half-Hop: A graph upsampling approach for slowing down message passing
LinkDistMLP
95.68%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
LinkDist
95.66%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
NCSAGE
96.48 ± 0.25
Clarify Confused Nodes via Separated Learning
CoLinkDist
95.80%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
Exphormer
94.93±0.46%
Exphormer: Sparse Transformers for Graphs
GCN-LPA
94.8 ± 0.4
Unifying Graph Convolutional Neural Networks and Label Propagation
SNoRe
88.7%
SNoRe: Scalable Unsupervised Learning of Symbolic Node Representations
-
3ference
95.99%
Inferring from References with Differences for Semi-Supervised Node Classification on Graphs
SIGN
91.98 ± 0.50
SIGN: Scalable Inception Graph Neural Networks
CoLinkDistMLP
95.74%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
Graph InfoClust (GIC)
89.4 ± 0.4
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning
GNNMoE(SAGE-like P)
95.68±0.24
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
DAGNN (Ours)
92.8%
Towards Deeper Graph Neural Networks
NCGCN
96.64 ± 0.29
Clarify Confused Nodes via Separated Learning
GCN
94.06%
Half-Hop: A graph upsampling approach for slowing down message passing
GCN (PPR Diffusion)
93.01%
Diffusion Improves Graph Learning
GraphSAGE
95.11%
Half-Hop: A graph upsampling approach for slowing down message passing
GNNMoE(GAT-like P)
95.72±0.23
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
GraphMix (GCN)
91.83 ± 0.51
GraphMix: Improved Training of GNNs for Semi-Supervised Learning
0 of 23 row(s) selected.
Previous
Next