HyperAI
HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
ノード分類
Node Classification On Amz Photo
Node Classification On Amz Photo
評価指標
Accuracy
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Accuracy
Paper Title
Repository
GLNN
92.11± 1.08%
Graph-less Neural Networks: Teaching Old MLPs New Tricks via Distillation
-
GraphSAGE
95.03%
Half-Hop: A graph upsampling approach for slowing down message passing
-
HH-GraphSAGE
94.55%
Half-Hop: A graph upsampling approach for slowing down message passing
-
NCSAGE
95.93 ± 0.36
Clarify Confused Nodes via Separated Learning
-
HH-GCN
94.52%
Half-Hop: A graph upsampling approach for slowing down message passing
-
CGT
95.73±0.84
Mitigating Degree Biases in Message Passing Mechanism by Utilizing Community Structures
-
Graph InfoClust (GIC)
90.4 ± 1.0
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning
-
JK (Heat Diffusion)
92.93%
Diffusion Improves Graph Learning
-
Exphormer
95.35±0.22%
Exphormer: Sparse Transformers for Graphs
-
SIGN
91.72 ± 1.20
SIGN: Scalable Inception Graph Neural Networks
-
NCGCN
95.45 ± 0.45
Clarify Confused Nodes via Separated Learning
-
DAGNN (Ours)
92%
Towards Deeper Graph Neural Networks
-
GCN
93.59%
Half-Hop: A graph upsampling approach for slowing down message passing
-
CPF-ind-GAT
94.10%
Extract the Knowledge of Graph Neural Networks and Go Beyond it: An Effective Knowledge Distillation Framework
-
0 of 14 row(s) selected.
Previous
Next
Node Classification On Amz Photo | SOTA | HyperAI超神経