HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
Node Classification
Node Classification On Actor
Node Classification On Actor
評価指標
Accuracy
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Accuracy
Paper Title
Repository
CATv3-sup
38.5±1.2
CAT: A Causally Graph Attention Network for Trimming Heterophilic Graph
MbaGCN
37.97±0.91
Mamba-Based Graph Convolutional Networks: Tackling Over-smoothing with Selective State Space
-
GCNH
36.89 ± 1.50
GCNH: A Simple Method For Representation Learning On Heterophilous Graphs
ACM-GCN+
36.26 ± 1.34
Revisiting Heterophily For Graph Neural Networks
Gen-NSD
37.80 ± 1.22
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
NLMLP
37.9 ± 1.3
Non-Local Graph Neural Networks
FAGCN
34.82 ± 1.35
Beyond Low-frequency Information in Graph Convolutional Networks
SADE-GCN
37.91 ± 0.97
Self-attention Dual Embedding for Graphs with Heterophily
-
TE-GCNN
-
Transfer Entropy in Graph Convolutional Neural Networks
HiGNN
37.21 ± 1.35
Learn from Heterophily: Heterophilous Information-enhanced Graph Neural Network
GPRGNN+DHGR
37.43 ± 0.78
Make Heterophily Graphs Better Fit GNN: A Graph Rewiring Approach
-
SignGT
38.65±0.32
SignGT: Signed Attention-based Graph Transformer for Graph Representation Learning
-
GPRGCN
35.16 ± 0.9
Adaptive Universal Generalized PageRank Graph Neural Network
RDGNN-I
38.69 ± 1.41
Graph Neural Reaction Diffusion Models
-
ACMII-GCN
36.31 ± 1.2
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++
37.09 ± 1.32
Revisiting Heterophily For Graph Neural Networks
M2M-GNN
36.72 ± 1.6
Sign is Not a Remedy: Multiset-to-Multiset Message Passing for Learning on Heterophilic Graphs
Diag-NSD
37.79 ± 1.01
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
HDP
37.26 ± 0.67
Heterophilous Distribution Propagation for Graph Neural Networks
-
NCGCN
43.16 ± 1.32
Clarify Confused Nodes via Separated Learning
0 of 62 row(s) selected.
Previous
Next