HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
固有表現認識(NER)
Named Entity Recognition On Conll
Named Entity Recognition On Conll
評価指標
F1
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
F1
Paper Title
Repository
BiLSTM-CRF+ELMo
93.42
Deep contextualized word representations
LUKE + SubRegWeigh (K-means)
95.27
SubRegWeigh: Effective and Efficient Annotation Weighing with Subword Regularization
Pooled Flair
94.13
CrossWeigh: Training Named Entity Tagger from Imperfect Annotations
Noise-robust Co-regularization + LUKE
95.60
Learning from Noisy Labels for Entity-Centric Information Extraction
LSTM-CRF
91.47
Neural Architectures for Named Entity Recognition
Noise-robust Co-regularization + BERT-large
94.04
Learning from Noisy Labels for Entity-Centric Information Extraction
RoBERTa + SubRegWeigh (K-means)
95.45
SubRegWeigh: Effective and Efficient Annotation Weighing with Subword Regularization
CrossWeigh + Pooled Flair
94.28
CrossWeigh: Training Named Entity Tagger from Imperfect Annotations
CL-KL
94.81
Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning
LUKE(Large)
95.89
LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention
BiLSTM-CNN-CRF
91.87
End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF
0 of 11 row(s) selected.
Previous
Next