HyperAI超神経

Medical Image Segmentation On Kvasir Seg

評価指標

Average MAE
mean Dice

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

比較表
モデル名Average MAEmean Dice
fanet-a-feedback-attention-network-for0.81530.8803
a-comprehensive-study-on-colorectal-polyp-0.8508
rupnet-residual-upsampling-network-for-real-0.7658
tganet-text-guided-attention-for-improved-0.8982
esfpnet-efficient-deep-learning-architecture-0.931
transnetr-transformer-based-residual-network-0.8706
real-time-polyp-detection-localisation-and-0.8206
comma-propagating-complementary-multi-level0.0240.904
effisegnet-gastrointestinal-polyp-0.9483
hardnet-dfus-an-enhanced-harmonically-0.9363
dual-cross-attention-for-medical-image-0.8516
meganet-multi-scale-edge-guided-attention0.0260.911
hardnet-mseg-a-simple-encoder-decoder-polyp0.0250.912
uacanet-uncertainty-augmented-context0.0260.905
ag-curesnest-a-novel-method-for-colon-polyp-0.902
spatially-exclusive-pasting-a-general-data-0.9411
comma-propagating-complementary-multi-level0.0270.901
metaformer-and-cnn-hybrid-model-for-polyp-0.939
msrf-net-a-multi-scale-residual-fusion-0.9217
emcad-efficient-multi-scale-convolutional-0.928
stepwise-feature-fusion-local-guides-global-0.9357
self-prompting-polyp-segmentation-in-0.866
transfuse-fusing-transformers-and-cnns-for-0.918
transresu-net-transformer-based-resu-net-for-0.8884
effisegnet-gastrointestinal-polyp-0.9488
duat-dual-aggregation-transformer-network-for0.0230.924
kvasir-seg-a-segmented-polyp-dataset-0.7877
using-duck-net-for-polyp-image-segmentation-1-0.9502
medical-image-segmentation-via-cascaded-0.9258
caranet-context-axial-reverse-attention0.0230.918
transfuse-fusing-transformers-and-cnns-for-0.918
s2s2-semantic-stacking-for-robust-semantic-0.932
uacanet-uncertainty-augmented-context0.0250.912
promise-promptable-medical-image-segmentation-0.911
unet-a-nested-u-net-architecture-for-medical0.0480.8210
bdg-net-boundary-distribution-guided-network0.0210.915
fcn-transformer-feature-fusion-for-polyp-0.9385
rabit-an-efficient-transformer-using-0.927
adaptive-t-vmf-dice-loss-for-multi-class-0.9445
gmsrf-net-an-improved-generalizability-with-0.9263
g-cascade-efficient-cascaded-graph-0.9274
kdas3-knowledge-distillation-via-attention0.0270.913
polyp-sam-can-a-text-guided-sam-perform-0.902
adaptation-of-distinct-semantics-for-0.92
ugcanet-a-unified-global-context-aware-0.928
fcb-swinv2-transformer-for-polyp-segmentation-0.9420
ddanet-dual-decoder-attention-network-for-0.8576
lm-net-a-light-weight-and-multi-scale-network-0.9409
u-net-convolutional-networks-for-biomedical0.0550.8180
meganet-multi-scale-edge-guided-attention0.0250.913
sam-eg-segment-anything-model-with-egde-0.915
resunet-an-advanced-architecture-for-medical-0.8133
multi-kernel-positional-embedding-convnext-0.8818
colonformer-an-efficient-transformer-based-0.927
a-denseunet-adaptive-densely-connected-unet-0.9085
pranet-parallel-reverse-attention-network-for0.0300.898