Medical Image Segmentation On Kvasir Seg
評価指標
Average MAE
mean Dice
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
比較表
モデル名 | Average MAE | mean Dice |
---|---|---|
fanet-a-feedback-attention-network-for | 0.8153 | 0.8803 |
a-comprehensive-study-on-colorectal-polyp | - | 0.8508 |
rupnet-residual-upsampling-network-for-real | - | 0.7658 |
tganet-text-guided-attention-for-improved | - | 0.8982 |
esfpnet-efficient-deep-learning-architecture | - | 0.931 |
transnetr-transformer-based-residual-network | - | 0.8706 |
real-time-polyp-detection-localisation-and | - | 0.8206 |
comma-propagating-complementary-multi-level | 0.024 | 0.904 |
effisegnet-gastrointestinal-polyp | - | 0.9483 |
hardnet-dfus-an-enhanced-harmonically | - | 0.9363 |
dual-cross-attention-for-medical-image | - | 0.8516 |
meganet-multi-scale-edge-guided-attention | 0.026 | 0.911 |
hardnet-mseg-a-simple-encoder-decoder-polyp | 0.025 | 0.912 |
uacanet-uncertainty-augmented-context | 0.026 | 0.905 |
ag-curesnest-a-novel-method-for-colon-polyp | - | 0.902 |
spatially-exclusive-pasting-a-general-data | - | 0.9411 |
comma-propagating-complementary-multi-level | 0.027 | 0.901 |
metaformer-and-cnn-hybrid-model-for-polyp | - | 0.939 |
msrf-net-a-multi-scale-residual-fusion | - | 0.9217 |
emcad-efficient-multi-scale-convolutional | - | 0.928 |
stepwise-feature-fusion-local-guides-global | - | 0.9357 |
self-prompting-polyp-segmentation-in | - | 0.866 |
transfuse-fusing-transformers-and-cnns-for | - | 0.918 |
transresu-net-transformer-based-resu-net-for | - | 0.8884 |
effisegnet-gastrointestinal-polyp | - | 0.9488 |
duat-dual-aggregation-transformer-network-for | 0.023 | 0.924 |
kvasir-seg-a-segmented-polyp-dataset | - | 0.7877 |
using-duck-net-for-polyp-image-segmentation-1 | - | 0.9502 |
medical-image-segmentation-via-cascaded | - | 0.9258 |
caranet-context-axial-reverse-attention | 0.023 | 0.918 |
transfuse-fusing-transformers-and-cnns-for | - | 0.918 |
s2s2-semantic-stacking-for-robust-semantic | - | 0.932 |
uacanet-uncertainty-augmented-context | 0.025 | 0.912 |
promise-promptable-medical-image-segmentation | - | 0.911 |
unet-a-nested-u-net-architecture-for-medical | 0.048 | 0.8210 |
bdg-net-boundary-distribution-guided-network | 0.021 | 0.915 |
fcn-transformer-feature-fusion-for-polyp | - | 0.9385 |
rabit-an-efficient-transformer-using | - | 0.927 |
adaptive-t-vmf-dice-loss-for-multi-class | - | 0.9445 |
gmsrf-net-an-improved-generalizability-with | - | 0.9263 |
g-cascade-efficient-cascaded-graph | - | 0.9274 |
kdas3-knowledge-distillation-via-attention | 0.027 | 0.913 |
polyp-sam-can-a-text-guided-sam-perform | - | 0.902 |
adaptation-of-distinct-semantics-for | - | 0.92 |
ugcanet-a-unified-global-context-aware | - | 0.928 |
fcb-swinv2-transformer-for-polyp-segmentation | - | 0.9420 |
ddanet-dual-decoder-attention-network-for | - | 0.8576 |
lm-net-a-light-weight-and-multi-scale-network | - | 0.9409 |
u-net-convolutional-networks-for-biomedical | 0.055 | 0.8180 |
meganet-multi-scale-edge-guided-attention | 0.025 | 0.913 |
sam-eg-segment-anything-model-with-egde | - | 0.915 |
resunet-an-advanced-architecture-for-medical | - | 0.8133 |
multi-kernel-positional-embedding-convnext | - | 0.8818 |
colonformer-an-efficient-transformer-based | - | 0.927 |
a-denseunet-adaptive-densely-connected-unet | - | 0.9085 |
pranet-parallel-reverse-attention-network-for | 0.030 | 0.898 |