Medical Image Segmentation On Etis
評価指標
mIoU
mean Dice
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
比較表
モデル名 | mIoU | mean Dice |
---|---|---|
meganet-multi-scale-edge-guided-attention | 0.709 | 0.789 |
using-duck-net-for-polyp-image-segmentation-1 | 0.8788 | 0.9354 |
rsaformer-a-method-of-polyp-segmentation-with | - | 0.835 |
duat-dual-aggregation-transformer-network-for | 0.746 | 0.822 |
stepwise-feature-fusion-local-guides-global | 0.720 | 0.796 |
esfpnet-efficient-deep-learning-architecture | 0.748 | 0.823 |
emcad-efficient-multi-scale-convolutional | - | 0.9229 |
meta-polyp-a-baseline-for-efficient-polyp | 0.704 | 0.78 |
promise-promptable-medical-image-segmentation | 0.750 | 0.840 |
uacanet-uncertainty-augmented-context | 0.689 | 0.766 |
medical-image-segmentation-via-cascaded | 0.7258 | 0.8007 |
resunet-an-advanced-architecture-for-medical | 0.7534 | 0.6364 |
pranet-parallel-reverse-attention-network-for | 0.5670 | 0.6280 |
meganet-multi-scale-edge-guided-attention | 0.665 | 0.739 |
hardnet-mseg-a-simple-encoder-decoder-polyp | 0.613 | 0.677 |
comma-propagating-complementary-multi-level | 0.648 | 0.711 |
metaformer-and-cnn-hybrid-model-for-polyp | 0.9179 | 0.9572 |
transfuse-fusing-transformers-and-cnns-for | 0.661 | 0.737 |
transfuse-fusing-transformers-and-cnns-for | 0.659 | 0.733 |
hardnet-dfus-an-enhanced-harmonically | - | 0.730 |
caranet-context-axial-reverse-attention | 0.672 | 0.747 |
uacanet-uncertainty-augmented-context | 0.615 | 0.694 |
sam-eg-segment-anything-model-with-egde | 0.681 | 0.757 |
a-comprehensive-study-on-colorectal-polyp | 0.7458 | 0.6136 |