Medical Image Segmentation On Cvc Colondb
評価指標
mIoU
mean Dice
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
比較表
モデル名 | mIoU | mean Dice |
---|---|---|
g-cascade-efficient-cascaded-graph | 0.7460 | 0.8261 |
transfuse-fusing-transformers-and-cnns-for | 0.676 | 0.744 |
emcad-efficient-multi-scale-convolutional | - | 0.9231 |
uacanet-uncertainty-augmented-context | 0.704 | 0.783 |
duat-dual-aggregation-transformer-network-for | 0.737 | 0.819 |
sam-eg-segment-anything-model-with-egde | 0.689 | 0.774 |
promise-promptable-medical-image-segmentation | 0.789 | 0.874 |
comma-propagating-complementary-multi-level | 0.689 | 0.754 |
kdas3-knowledge-distillation-via-attention | 0.679 | 0.759 |
uacanet-uncertainty-augmented-context | 0.678 | 0.751 |
metaformer-and-cnn-hybrid-model-for-polyp | 0.9096 | 0.9526 |
meta-polyp-a-baseline-for-efficient-polyp | 0.79 | 0.867 |
medical-image-segmentation-via-cascaded | 0.7453 | 0.8254 |
hardnet-mseg-a-simple-encoder-decoder-polyp | 0.660 | 0.731 |
transfuse-fusing-transformers-and-cnns-for | 0.696 | 0.773 |
a-comprehensive-study-on-colorectal-polyp | 0.8466 | 0.8474 |
esfpnet-efficient-deep-learning-architecture | 0.730 | 0.811 |
stepwise-feature-fusion-local-guides-global | 0.721 | 0.802 |
polyp-pvt-polyp-segmentation-with-pyramid | 0.727 | 0.808 |
caranet-context-axial-reverse-attention | 0.689 | 0.773 |
hardnet-dfus-an-enhanced-harmonically | - | 0.774 |
using-duck-net-for-polyp-image-segmentation-1 | 0.8785 | 0.9353 |
pranet-parallel-reverse-attention-network-for | 0.649 | 0.709 |