HyperAI超神経

Link Property Prediction On Ogbl Biokg

評価指標

Number of params
Test MRR
Validation MRR

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

モデル名
Number of params
Test MRR
Validation MRR
Paper TitleRepository
ComplEx-N3-RP1877500000.84940.8497Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations
TransE1876480000.7452 ± 0.00040.7456 ± 0.0003--
ComplEx1876480000.8095 ± 0.00070.8105 ± 0.0001Complex Embeddings for Simple Link Prediction
GFA-NN-0.90110.9011Embedding Knowledge Graphs Attentive to Positional and Centrality Qualities-
DistMult1876480000.8043 ± 0.00030.8055 ± 0.0003Embedding Entities and Relations for Learning and Inference in Knowledge Bases
ComplEx^21876480000.8583 ± 0.00050.8592 ± 0.0004How to Turn Your Knowledge Graph Embeddings into Generative Models
ComplEx-RP (1000dim)1877500000.8492 ± 0.00020.8497 ± 0.0002--
ComplEx^21876480000.8583 ± 0.00050.8592 ± 0.0004--
UniBi1816541700.8550 ± 0.00030.8553 ± 0.0001Prior Bilinear Based Models for Knowledge Graph Completion
RelEns8494271060.9618 ± 0.00020.9627 ± 0.0004Relation-aware Ensemble Learning for Knowledge Graph Embedding
AutoBLM-KGBench1920471040.8536 ± 0.00030.8548 ± 0.0002Bilinear Scoring Function Search for Knowledge Graph Learning
AutoSF938240000.8309 ± 0.00080.8317 ± 0.0007AutoSF: Searching Scoring Functions for Knowledge Graph Embedding
PairRE1877500000.8164 ± 0.00050.8172 ± 0.0005PairRE: Knowledge Graph Embeddings via Paired Relation Vectors
NBFNet734,2090.83170.8318Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction
TripleRE4696300020.8348 ± 0.00070.8360 ± 0.0006--
RotatE1875970000.7989 ± 0.00040.7997 ± 0.0002RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space
0 of 16 row(s) selected.