HyperAI超神経

Learning With Noisy Labels On Cifar 10N Worst

評価指標

Accuracy (mean)

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

比較表
モデル名Accuracy (mean)
co-teaching-robust-training-of-deep-neural83.83
early-learning-regularization-prevents83.58
generative-noisy-label-learning-by-implicit86.99
19060018980.48
combating-noisy-labels-by-agreement-a-joint83.37
psscl-a-progressive-sample-selection95.12
sample-prior-guided-robust-model-learning-to93.65
モデル 877.69
understanding-generalized-label-smoothing-182.99
making-deep-neural-networks-robust-to-label79.79
how-does-disagreement-help-generalization83.26
when-optimizing-f-divergence-is-robust-with-182.53
promix-combating-label-noise-via-maximizing96.16
generalized-cross-entropy-loss-for-training80.66
dividemix-learning-with-noisy-labels-as-semi-192.56
clusterability-as-an-alternative-to-anchor85.36
provably-end-to-end-label-noise-learning80.53
learning-with-instance-dependent-label-noise-183.60
early-learning-regularization-prevents91.09
peer-loss-functions-learning-from-noisy82.53
robust-training-under-label-noise-by-over93.24
does-label-smoothing-mitigate-label-noise82.76
making-deep-neural-networks-robust-to-label77.61
learning-with-instance-dependent-label-noise-191.66
imprecise-label-learning-a-unified-framework93.58