HyperAI
HyperAI超神経
ホーム
プラットフォーム
ドキュメント
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
利用規約
プライバシーポリシー
日本語
HyperAI
HyperAI超神経
Toggle Sidebar
サイトを検索…
⌘
K
Command Palette
Search for a command to run...
プラットフォーム
ホーム
SOTA
ノイジーラベル学習
Learning With Noisy Labels On Cifar 10N Worst
Learning With Noisy Labels On Cifar 10N Worst
評価指標
Accuracy (mean)
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Accuracy (mean)
Paper Title
ProMix
96.16
ProMix: Combating Label Noise via Maximizing Clean Sample Utility
PSSCL
95.12
PSSCL: A progressive sample selection framework with contrastive loss designed for noisy labels
PGDF
93.65
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels
ILL
93.58
Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations
SOP+
93.24
Robust Training under Label Noise by Over-parameterization
Divide-Mix
92.56
DivideMix: Learning with Noisy Labels as Semi-supervised Learning
CORES*
91.66
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
ELR+
91.09
Early-Learning Regularization Prevents Memorization of Noisy Labels
GNL
86.99
Partial Label Supervision for Agnostic Generative Noisy Label Learning
CAL
85.36
Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels
Co-Teaching
83.83
Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
CORES
83.60
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
ELR
83.58
Early-Learning Regularization Prevents Memorization of Noisy Labels
JoCoR
83.37
Combating noisy labels by agreement: A joint training method with co-regularization
Co-Teaching+
83.26
How does Disagreement Help Generalization against Label Corruption?
Negative-LS
82.99
Understanding Generalized Label Smoothing when Learning with Noisy Labels
Positive-LS
82.76
Does label smoothing mitigate label noise?
F-div
82.53
When Optimizing $f$-divergence is Robust with Label Noise
Peer Loss
82.53
Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates
GCE
80.66
Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels
0 of 25 row(s) selected.
Previous
Next
Learning With Noisy Labels On Cifar 10N Worst | SOTA | HyperAI超神経