HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
Lane Detection
Lane Detection On Curvelanes
Lane Detection On Curvelanes
評価指標
F1 score
GFLOPs
Precision
Recall
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
F1 score
GFLOPs
Precision
Recall
Paper Title
Repository
CANet-S
86.57
13.1
91.37
82.25
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
-
CANet-M
87.19
22.6
91.53
83.25
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
-
Enet-SAD
50.31
3.9
63.6
41.6
CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending
CondLaneNet-L(ResNet-101)
86.10
44.9
88.98
83.41
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution
CANet-L(ResNet101)
-
45.7
-
84.36
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
-
CLRNet-DLA34
86.1
18.4
91.4
81.39
CLRerNet: Improving Confidence of Lane Detection with LaneIoU
SCNN
65.02
328.4
76.13
56.74
CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending
CANet-L
87.87
-
91.69
-
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
-
CurveLane-S
81.12
7.4
93.58
71.59
CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending
CondLSTR (ResNet-101)
88.47
-
-
-
Generating Dynamic Kernels via Transformers for Lane Detection
CondLSTR (ResNet-18)
87.99
-
-
-
Generating Dynamic Kernels via Transformers for Lane Detection
CLRerNet-DLA34
86.47
18.4
91.66
81.83
CLRerNet: Improving Confidence of Lane Detection with LaneIoU
PointLaneNet
78.47
14.8
86.33
72.91
CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending
CurveLane-M
81.8
11.6
93.49
72.71
CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending
CondLaneNet-M(ResNet-34)
85.92
19.7
88.29
83.68
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution
CondLSTR (ResNet-34)
88.23
-
-
-
Generating Dynamic Kernels via Transformers for Lane Detection
CurveLane-L
82.29
20.7
91.11
75.03
CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and Adaptive Point Blending
CondLaneNet-S(ResNet-18)
85.09
10.3
87.75
82.58
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution
0 of 18 row(s) selected.
Previous
Next