HyperAI
HyperAI超神経
ホーム
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
サイトを検索…
⌘
K
ホーム
SOTA
画像生成
Image Generation On Imagenet 32X32
Image Generation On Imagenet 32X32
評価指標
bpd
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
bpd
Paper Title
Repository
NVAE w/ flow
3.92
NVAE: A Deep Hierarchical Variational Autoencoder
-
Glow (Kingma and Dhariwal, 2018)
4.09
Glow: Generative Flow with Invertible 1x1 Convolutions
-
MintNet
4.06
MintNet: Building Invertible Neural Networks with Masked Convolutions
-
Residual Flow
4.01
Residual Flows for Invertible Generative Modeling
-
VDM
3.72
Variational Diffusion Models
-
SPN Menick and Kalchbrenner (2019)
3.85
Generating High Fidelity Images with Subscale Pixel Networks and Multidimensional Upscaling
-
StyleGAN-XL
-
StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets
-
δ-VAE
3.77
Preventing Posterior Collapse with delta-VAEs
-
PaGoDA
-
PaGoDA: Progressive Growing of a One-Step Generator from a Low-Resolution Diffusion Teacher
-
Very Deep VAE
3.8
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
-
PixelRNN
3.86
Pixel Recurrent Neural Networks
-
Hourglass
3.74
Hierarchical Transformers Are More Efficient Language Models
-
DDPM++ (VP, NLL) + ST
3.85
Soft Truncation: A Universal Training Technique of Score-based Diffusion Model for High Precision Score Estimation
-
i-DODE
3.43
Improved Techniques for Maximum Likelihood Estimation for Diffusion ODEs
-
MRCNF
3.77
Multi-Resolution Continuous Normalizing Flows
-
Flow++
3.86
Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design
-
BIVA Maaloe et al. (2019)
3.96
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling
-
Reflected Diffusion
3.74
Reflected Diffusion Models
-
NDM
3.55
Neural Diffusion Models
-
DDPM
3.89
Denoising Diffusion Probabilistic Models
-
0 of 33 row(s) selected.
Previous
Next