HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
画像生成
Image Generation On Ffhq 1024 X 1024
Image Generation On Ffhq 1024 X 1024
評価指標
FID
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
FID
Paper Title
Repository
StyleGAN3-T
2.79
Alias-Free Generative Adversarial Networks
Diffusion StyleGAN2
2.83
Diffusion-GAN: Training GANs with Diffusion
Very Deep VAE
-
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
Efficient-VDVAE
-
Efficient-VDVAE: Less is more
StyleALAE
13.09
Adversarial Latent Autoencoders
SWAGAN-Bi
4.06
SWAGAN: A Style-based Wavelet-driven Generative Model
MSG-StyleGAN
5.8
MSG-GAN: Multi-Scale Gradients for Generative Adversarial Networks
Polarity-StyleGAN2
2.57
Polarity Sampling: Quality and Diversity Control of Pre-Trained Generative Networks via Singular Values
StyleGAN
4.4
A Style-Based Generator Architecture for Generative Adversarial Networks
StyleNAT
4.17
StyleNAT: Giving Each Head a New Perspective
StyleGAN3-R
3.07
Alias-Free Generative Adversarial Networks
StyleGAN2
2.84
Analyzing and Improving the Image Quality of StyleGAN
StyleSwin
5.07
StyleSwin: Transformer-based GAN for High-resolution Image Generation
StyleSAN-XL
1.61
SAN: Inducing Metrizability of GAN with Discriminative Normalized Linear Layer
CIPS
10.07
Image Generators with Conditionally-Independent Pixel Synthesis
MaGNET-StyleGAN2
2.66
MaGNET: Uniform Sampling from Deep Generative Network Manifolds Without Retraining
StyleGAN-XL
2.02
StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets
FQ-GAN
3.19
Feature Quantization Improves GAN Training
HiT-B
6.37
Improved Transformer for High-Resolution GANs
StyleGAN2 ADA+bCR
3.62
Training Generative Adversarial Networks with Limited Data
0 of 20 row(s) selected.
Previous
Next