Image Generation On Fashion Mnist
評価指標
FID
Precision
Recall
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
モデル名 | FID | Precision | Recall | Paper Title | Repository |
---|---|---|---|---|---|
PR-GLOW- Precision | 83.25 | 0.73 | 0.34 | - | - |
GLF+perceptual loss (ours) | 10.3 | - | - | Generative Latent Flow | |
PR-GLOW- Recall | 42.85 | 0.6648 | 0.4973 | - | - |
PAE | 28.0 | - | - | Probabilistic Autoencoder | |
Spiking-Diffusion | 91.98 | - | - | Spiking-Diffusion: Vector Quantized Discrete Diffusion Model with Spiking Neural Networks | |
PeerGAN | 21.73 | - | - | DuelGAN: A Duel Between Two Discriminators Stabilizes the GAN Training | - |
Sliced Iterative Generator | 13.7 | - | - | Sliced Iterative Normalizing Flows |
0 of 7 row(s) selected.