Graph Clustering On Cora
評価指標
ACC
ARI
F1
NMI
Precision
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
モデル名 | ACC | ARI | F1 | NMI | Precision | Paper Title | Repository |
---|---|---|---|---|---|---|---|
ARGE | 64 | 35.2 | 61.9 | 0.449 | 64.6 | Adversarially Regularized Graph Autoencoder for Graph Embedding | |
DAEGC+GSCAN† | - | 49.6 | 71.7 | 52.4 | - | GSCAN: Graph Stability Clustering for Applications With Noise Using Edge-Aware Excess-of-Mass | |
GAE | 59.6 | - | - | - | - | Variational Graph Auto-Encoders | |
RWR-GAE | 66.9 | - | - | 48.1 | - | RWR-GAE: Random Walk Regularization for Graph Auto Encoders | |
R-GMM-VGAE | 76.7 | 57.9 | - | 57.3 | - | Rethinking Graph Auto-Encoder Models for Attributed Graph Clustering | |
AGC | 68.92 | - | - | 53.68 | - | Attributed Graph Clustering via Adaptive Graph Convolution | |
R-DGAE | 73.7 | 54.1 | - | 56.0 | - | Rethinking Graph Auto-Encoder Models for Attributed Graph Clustering | |
ARVGE | 63.8 | 37.4 | 62.7 | 45 | 62.4 | Adversarially Regularized Graph Autoencoder for Graph Embedding | |
RWR-VGAE | 68.5 | - | - | 45.5 | - | RWR-GAE: Random Walk Regularization for Graph Auto Encoders |
0 of 9 row(s) selected.