HyperAI超神経

Graph Classification On Mnist

評価指標

Accuracy

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

比較表
モデル名Accuracy
unlocking-the-potential-of-classic-gnns-for98.382 ± 0.095
graph-transformers-without-positional98.362
learning-long-range-dependencies-on-graphs98.760 ± 0.079
benchmarking-graph-neural-networks97.340
edge-augmented-graph-transformers-global-self98.173
exphormer-sparse-transformers-for-graphs98.414±0.038
masked-attention-is-all-you-need-for-graphs98.753±0.041
recipe-for-a-general-powerful-scalable-graph98.05
ckgconv-general-graph-convolution-with98.423
topology-informed-graph-transformer98.230±0.133
unlocking-the-potential-of-classic-gnns-for98.712 ± 0.137
graph-inductive-biases-in-transformers98.108
masked-attention-is-all-you-need-for-graphs98.917±0.020