HyperAI
HyperAI超神経
ホーム
プラットフォーム
ドキュメント
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
Command Palette
Search for a command to run...
ホーム
SOTA
少ショット画像分類
Few Shot Image Classification On Meta Dataset
Few Shot Image Classification On Meta Dataset
評価指標
Accuracy
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Accuracy
Paper Title
Repository
SMAT (DINO-VIT-Base-16-224)
85.27
Unleashing the Power of Meta-tuning for Few-shot Generalization Through Sparse Interpolated Experts
P>M>F (P=DINO-ViT-base, M=ProtoNet)
84.75
Pushing the Limits of Simple Pipelines for Few-Shot Learning: External Data and Fine-Tuning Make a Difference
TSP (ResNet18; applied on TA^2-Net)
81.40
Task-Specific Preconditioner for Cross-Domain Few-Shot Learning
-
TSA (ResNet18, URL, residual adapters, 84x84 image, shuffled data, scratch, MDL)
78.07
Cross-domain Few-shot Learning with Task-specific Adapters
UpperCaSE-EfficientNetB0
76.1
Contextual Squeeze-and-Excitation for Efficient Few-Shot Image Classification
URL (ResNet18, 84x84 image, shuffled data, scratch, MDL)
75.75
Universal Representation Learning from Multiple Domains for Few-shot Classification
UpperCaSE-ResNet50
74.9
Contextual Squeeze-and-Excitation for Efficient Few-Shot Image Classification
URT+MQDA
74.3
Shallow Bayesian Meta Learning for Real-World Few-Shot Recognition
URT
72.15
A Universal Representation Transformer Layer for Few-Shot Image Classification
SUR
70.72
Selecting Relevant Features from a Multi-domain Representation for Few-shot Classification
Transductive CNAPS
70.32
Enhancing Few-Shot Image Classification with Unlabelled Examples
Simple CNAPS
69.86
Improved Few-Shot Visual Classification
SUR-pnf
69.3
Selecting Relevant Features from a Multi-domain Representation for Few-shot Classification
Invariance-Equivariance
68.89
Exploring Complementary Strengths of Invariant and Equivariant Representations for Few-Shot Learning
CNAPs
66.9
Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive Processes
fo-Proto-MAML
63.428
Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples
Prototypical Networks
60.573
Prototypical Networks for Few-shot Learning
Finetune
58.758
Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples
fo-MAML
57.024
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Matching Networks
56.247
Matching Networks for One Shot Learning
0 of 22 row(s) selected.
Previous
Next
Few Shot Image Classification On Meta Dataset | SOTA | HyperAI超神経