Few Shot Image Classification On Meta Dataset
評価指標
Accuracy
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
比較表
モデル名 | Accuracy |
---|---|
improving-few-shot-visual-classification-with | 70.32 |
prototypical-networks-for-few-shot-learning | 60.573 |
matching-networks-for-one-shot-learning | 56.247 |
improved-few-shot-visual-classification | 69.86 |
task-specific-preconditioner-for-cross-domain | 81.40 |
shallow-bayesian-meta-learning-for-real-world | 74.3 |
meta-dataset-a-dataset-of-datasets-for | 63.428 |
contextual-squeeze-and-excitation-for | 76.1 |
improving-task-adaptation-for-cross-domain | 78.07 |
meta-dataset-a-dataset-of-datasets-for | 54.319 |
selecting-relevant-features-from-a-universal | 70.72 |
selecting-relevant-features-from-a-universal | 69.3 |
universal-representation-learning-from | 75.75 |
exploring-complementary-strengths-of | 68.89 |
meta-dataset-a-dataset-of-datasets-for | 58.758 |
contextual-squeeze-and-excitation-for | 74.9 |
model-agnostic-meta-learning-for-fast | 57.024 |
a-universal-representation-transformer-layer | 72.15 |
fast-and-flexible-multi-task-classification | 66.9 |
pushing-the-limits-of-simple-pipelines-for | 84.75 |
unleashing-the-power-of-meta-tuning-for-few | 85.27 |
learning-to-compare-relation-network-for-few | 53.315 |