HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
Few Shot Image Classification
Few Shot Image Classification On Fc100 5 Way
Few Shot Image Classification On Fc100 5 Way
評価指標
Accuracy
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Accuracy
Paper Title
Repository
MetaOptNet-SVM+Task Aug
49.77
Task Augmentation by Rotating for Meta-Learning
Multi-Task Learning
42.4
Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation
FewTURE
47.68
Rethinking Generalization in Few-Shot Classification
SSFormers
43.72
Sparse Spatial Transformers for Few-Shot Learning
BAVARDAGE
57.27
Adaptive Dimension Reduction and Variational Inference for Transductive Few-Shot Classification
-
R2-D2+Task Aug
51.35
Task Augmentation by Rotating for Meta-Learning
MTL
45.1
Meta-Transfer Learning for Few-Shot Learning
MCRNet-RR
40.7
Complementing Representation Deficiency in Few-shot Image Classification: A Meta-Learning Approach
Invariance-Equivariance
47.76
Exploring Complementary Strengths of Invariant and Equivariant Representations for Few-Shot Learning
EASY 2xResNet12 1/√2 (inductive)
47.94
EASY: Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients
ACC + Amphibian
41.6
Generalized Adaptation for Few-Shot Learning
-
SKD
46.5
Self-supervised Knowledge Distillation for Few-shot Learning
EASY 3xResNet12 (transductive)
54.13
EASY: Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients
MSENet
44.78
Enhancing Few-Shot Image Classification through Learnable Multi-Scale Embedding and Attention Mechanisms
MetaOptNet-SVM-trainval
47.2
Meta-Learning with Differentiable Convex Optimization
pseudo-shots
50.57
Extended Few-Shot Learning: Exploiting Existing Resources for Novel Tasks
HCTransformers
48.27
Attribute Surrogates Learning and Spectral Tokens Pooling in Transformers for Few-shot Learning
MCRNet-SVM
41
Complementing Representation Deficiency in Few-shot Image Classification: A Meta-Learning Approach
ConstellationNets
43.8
Constellation Nets for Few-Shot Learning
EASY 3xResNet12 (inductive)
48.07
EASY: Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients
0 of 22 row(s) selected.
Previous
Next