Domain Generalization On Gta5 To Cityscapes
評価指標
mIoU
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
モデル名 | mIoU | Paper Title | Repository |
---|---|---|---|
Self-adaptation (ResNet - 101) | 46.99 | Semantic Self-adaptation: Enhancing Generalization with a Single Sample | |
Rein | 66.4 | Stronger, Fewer, & Superior: Harnessing Vision Foundation Models for Domain Generalized Semantic Segmentation | |
GtA-SFDA Source-Only (DeepLabv2-ResNet101) | 43.5 | Generalize then Adapt: Source-Free Domain Adaptive Semantic Segmentation | |
VLTSeg (EVA02-CLIP-L) | 65.6 | Strong but simple: A Baseline for Domain Generalized Dense Perception by CLIP-based Transfer Learning | |
DIFF | 58.01 | Diffusion Features to Bridge Domain Gap for Semantic Segmentation | |
tqdm (EVA02-CLIP-L) | 68.88 | Textual Query-Driven Mask Transformer for Domain Generalized Segmentation | |
CMFormer | 55.31 | Learning Content-enhanced Mask Transformer for Domain Generalized Urban-Scene Segmentation |
0 of 7 row(s) selected.