HyperAI
HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
クロスモーダル検索 雑音対応
Cross Modal Retrieval With Noisy 2
Cross Modal Retrieval With Noisy 2
評価指標
Image-to-text R@1
Image-to-text R@10
Image-to-text R@5
R-Sum
Text-to-image R@1
Text-to-image R@10
Text-to-image R@5
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Image-to-text R@1
Image-to-text R@10
Image-to-text R@5
R-Sum
Text-to-image R@1
Text-to-image R@10
Text-to-image R@5
Paper Title
Repository
CTPR-SGR
76.2
98.3
95.8
508.7
60.5
92.7
85.2
Learning From Noisy Correspondence With Tri-Partition for Cross-Modal Matching
-
CREAM
77.4
97.3
95.0
502.3
58.7
89.8
84.1
Cross-modal Retrieval with Noisy Correspondence via Consistency Refining and Mining
UGNCL
78.4
97.8
95.8
505.6
59.8
89.5
84.3
UGNCL: Uncertainty-Guided Noisy Correspondence Learning for Efficient Cross-Modal Matching
CRCL
77.9
98.3
95.4
507.8
60.9
90.6
84.7
Cross-modal Active Complementary Learning with Self-refining Correspondence
-
SREM
79.5
97.9
94.2
507.8
61.2
90.2
84.8
Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation
-
GSC-SGR
78.3
97.8
94.6
505.8
60.1
90.5
84.5
Mitigating Noisy Correspondence by Geometrical Structure Consistency Learning
-
MSCN
77.4
97.6
94.9
501.9
59.6
89.2
83.2
Noisy Correspondence Learning with Meta Similarity Correction
-
NAC
79.3
97.8
94.6
507.1
60.8
90.1
84.5
NAC: Mitigating Noisy Correspondence in Cross-Modal Matching Via Neighbor Auxiliary Corrector
-
L2RM-SGRAF
77.9
97.8
95.2
503.8
59.8
89.5
83.6
Learning to Rematch Mismatched Pairs for Robust Cross-Modal Retrieval
-
LNC
76.3
96.9
93.7
498.9
58.4
89.8
83.8
Learning with Noisy Correspondence
-
BiCro*
78.1
97.5
94.4
504.7
60.4
89.9
84.4
BiCro: Noisy Correspondence Rectification for Multi-modality Data via Bi-directional Cross-modal Similarity Consistency
-
REPAIR
79.2
96.9
95.0
504.4
59.4
89.5
84.4
REPAIR: Rank Correlation and Noisy Pair Half-replacing with Memory for Noisy Correspondence
-
ReCon
80.3
97.8
95.3
511.8
61.6
91.3
85.5
ReCon: Enhancing True Correspondence Discrimination through Relation Consistency for Robust Noisy Correspondence Learning
-
NCR
75.0
97.5
93.9
496.7
58.3
89.0
83.0
Learning with Noisy Correspondence for Cross-modal Matching
DECL-SGRAF
77.5
97.0
93.8
494.7
56.1
88.5
81.8
Deep Evidential Learning with Noisy Correspondence for Cross-Modal Retrieval
RCL-SGR
74.2
96.9
91.8
487.2
55.6
87.5
81.2
Cross-Modal Retrieval with Partially Mismatched Pairs
0 of 16 row(s) selected.
Previous
Next