HyperAI
HyperAI超神経
ホーム
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
サイトを検索…
⌘
K
ホーム
SOTA
クロスモーダル検索 雑音対応
Cross Modal Retrieval With Noisy 2
Cross Modal Retrieval With Noisy 2
評価指標
Image-to-text R@1
Image-to-text R@10
Image-to-text R@5
R-Sum
Text-to-image R@1
Text-to-image R@10
Text-to-image R@5
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Image-to-text R@1
Image-to-text R@10
Image-to-text R@5
R-Sum
Text-to-image R@1
Text-to-image R@10
Text-to-image R@5
Paper Title
Repository
CTPR-SGR
76.2
98.3
95.8
508.7
60.5
92.7
85.2
Learning From Noisy Correspondence With Tri-Partition for Cross-Modal Matching
-
CREAM
77.4
97.3
95.0
502.3
58.7
89.8
84.1
Cross-modal Retrieval with Noisy Correspondence via Consistency Refining and Mining
-
UGNCL
78.4
97.8
95.8
505.6
59.8
89.5
84.3
UGNCL: Uncertainty-Guided Noisy Correspondence Learning for Efficient Cross-Modal Matching
-
CRCL
77.9
98.3
95.4
507.8
60.9
90.6
84.7
Cross-modal Active Complementary Learning with Self-refining Correspondence
SREM
79.5
97.9
94.2
507.8
61.2
90.2
84.8
Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation
-
GSC-SGR
78.3
97.8
94.6
505.8
60.1
90.5
84.5
Mitigating Noisy Correspondence by Geometrical Structure Consistency Learning
MSCN
77.4
97.6
94.9
501.9
59.6
89.2
83.2
Noisy Correspondence Learning with Meta Similarity Correction
NAC
79.3
97.8
94.6
507.1
60.8
90.1
84.5
NAC: Mitigating Noisy Correspondence in Cross-Modal Matching Via Neighbor Auxiliary Corrector
-
L2RM-SGRAF
77.9
97.8
95.2
503.8
59.8
89.5
83.6
Learning to Rematch Mismatched Pairs for Robust Cross-Modal Retrieval
LNC
76.3
96.9
93.7
498.9
58.4
89.8
83.8
Learning with Noisy Correspondence
-
BiCro*
78.1
97.5
94.4
504.7
60.4
89.9
84.4
BiCro: Noisy Correspondence Rectification for Multi-modality Data via Bi-directional Cross-modal Similarity Consistency
REPAIR
79.2
96.9
95.0
504.4
59.4
89.5
84.4
REPAIR: Rank Correlation and Noisy Pair Half-replacing with Memory for Noisy Correspondence
-
ReCon
80.3
97.8
95.3
511.8
61.6
91.3
85.5
ReCon: Enhancing True Correspondence Discrimination through Relation Consistency for Robust Noisy Correspondence Learning
NCR
75.0
97.5
93.9
496.7
58.3
89.0
83.0
Learning with Noisy Correspondence for Cross-modal Matching
-
DECL-SGRAF
77.5
97.0
93.8
494.7
56.1
88.5
81.8
Deep Evidential Learning with Noisy Correspondence for Cross-Modal Retrieval
-
RCL-SGR
74.2
96.9
91.8
487.2
55.6
87.5
81.2
Cross-Modal Retrieval with Partially Mismatched Pairs
-
0 of 16 row(s) selected.
Previous
Next