HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
Cross Modal Retrieval With Noisy
Cross Modal Retrieval With Noisy 1
Cross Modal Retrieval With Noisy 1
評価指標
Image-to-text R@1
Image-to-text R@10
Image-to-text R@5
R-Sum
Text-to-image R@1
Text-to-image R@10
Text-to-image R@5
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Image-to-text R@1
Image-to-text R@10
Image-to-text R@5
R-Sum
Text-to-image R@1
Text-to-image R@10
Text-to-image R@5
Paper Title
Repository
REPAIR
40.5
76.1
67.7
369.2
40.3
76.4
68.2
REPAIR: Rank Correlation and Noisy Pair Half-replacing with Memory for Noisy Correspondence
-
BiCro*
40.8
76.1
67.2
370.2
42.1
76.4
67.6
BiCro: Noisy Correspondence Rectification for Multi-modality Data via Bi-directional Cross-modal Similarity Consistency
-
DECL-SGRAF
39.0
75.5
66.1
364.3
40.7
76.7
66.3
Deep Evidential Learning with Noisy Correspondence for Cross-Modal Retrieval
UGNCL
43.6
74.9
67.1
373.1
42.7
76.4
68.4
UGNCL: Uncertainty-Guided Noisy Correspondence Learning for Efficient Cross-Modal Matching
NAC
41.8
77.3
68.6
373.5
40.5
77.0
68.3
NAC: Mitigating Noisy Correspondence in Cross-Modal Matching Via Neighbor Auxiliary Corrector
-
MSCN
40.1
76.6
65.7
366.7
40.6
76.3
67.4
Noisy Correspondence Learning with Meta Similarity Correction
RCL-SGRAF
41.7
73.6
66.0
364.4
41.6
75.1
66.4
Cross-Modal Retrieval with Partially Mismatched Pairs
ReCon
43.1
78.1
68.7
380.5
44.9
77.4
68.3
ReCon: Enhancing True Correspondence Discrimination through Relation Consistency for Robust Noisy Correspondence Learning
L2RM-SGRAF
43.0
75.7
67.5
374.2
42.8
77.2
68.0
Learning to Rematch Mismatched Pairs for Robust Cross-Modal Retrieval
CRCL
41.8
76.5
67.4
373.7
41.6
78.4
68.0
Cross-modal Active Complementary Learning with Self-refining Correspondence
NCR
39.5
73.5
64.5
355.6
40.3
73.2
64.6
Learning with Noisy Correspondence for Cross-modal Matching
SREM
40.9
77.1
67.5
372.2
41.5
77.0
68.2
Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation
-
GSC-SGR
42.1
77.7
68.4
375.1
42.2
77.1
67.6
Mitigating Noisy Correspondence by Geometrical Structure Consistency Learning
CREAM
40.3
77.1
68.5
372.6
40.2
78.3
68.2
Cross-modal Retrieval with Noisy Correspondence via Consistency Refining and Mining
LNC
39.5
73.1
64.0
355.5
40.6
73.5
64.8
Learning with Noisy Correspondence
-
0 of 15 row(s) selected.
Previous
Next