HyperAI
HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
継続学習
Continual Learning On Visual Domain Decathlon
Continual Learning On Visual Domain Decathlon
評価指標
decathlon discipline (Score)
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
decathlon discipline (Score)
Paper Title
Repository
Res. adapt. finetune all
2643
Learning multiple visual domains with residual adapters
-
Piggyback
2838
Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights
-
Res. adapt.
2118
Learning multiple visual domains with residual adapters
-
DAN
2851
Incremental Learning Through Deep Adaptation
-
Res. adapt. decay
2621
Learning multiple visual domains with residual adapters
-
NetTailor
3744
NetTailor: Tuning the Architecture, Not Just the Weights
-
Res. adapt. dom-pred
2503
Learning multiple visual domains with residual adapters
-
Series Res. adapt.
3159
Efficient parametrization of multi-domain deep neural networks
-
LwF
2515
Learning without Forgetting
-
BN adapt.
1363
Universal representations:The missing link between faces, text, planktons, and cat breeds
-
Res. adapt. (large)
3131
Learning multiple visual domains with residual adapters
-
Depthwise Sharing
3234
Depthwise Convolution is All You Need for Learning Multiple Visual Domains
-
Depthwise Soft Sharing
3507
Depthwise Convolution is All You Need for Learning Multiple Visual Domains
-
Parallel Res. adapt.
3412
Efficient parametrization of multi-domain deep neural networks
-
0 of 14 row(s) selected.
Previous
Next
Continual Learning On Visual Domain Decathlon | SOTA | HyperAI超神経