HyperAI
HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
中国語固有表現認識
Chinese Named Entity Recognition On Ontonotes
Chinese Named Entity Recognition On Ontonotes
評価指標
F1
Precision
Recall
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
F1
Precision
Recall
Paper Title
Repository
NFLAT
77.21
75.17
79.37
NFLAT: Non-Flat-Lattice Transformer for Chinese Named Entity Recognition
-
Lattice
73.88
-
-
Chinese NER Using Lattice LSTM
-
LGN
74.89
76.13
73.68
A Lexicon-Based Graph Neural Network for Chinese NER
-
FLAT
76.45
-
-
FLAT: Chinese NER Using Flat-Lattice Transformer
-
SLK-NER
80.2
-
-
SLK-NER: Exploiting Second-order Lexicon Knowledge for Chinese NER
-
LSTM + Lexicon augment
75.54
-
-
Simplify the Usage of Lexicon in Chinese NER
-
W2NER
83.08
-
-
Unified Named Entity Recognition as Word-Word Relation Classification
-
Baseline + BS
82.83
-
-
Boundary Smoothing for Named Entity Recognition
-
AESINER
81.18
-
-
Improving Named Entity Recognition with Attentive Ensemble of Syntactic Information
-
CAN-NER Model
73.64
75.05
72.29
CAN-NER: Convolutional Attention Network for Chinese Named Entity Recognition
-
BERT-MRC
82.11
-
-
A Unified MRC Framework for Named Entity Recognition
-
FLAT+BERT
81.82
-
-
FLAT: Chinese NER Using Flat-Lattice Transformer
-
FGN
82.04
-
-
FGN: Fusion Glyph Network for Chinese Named Entity Recognition
-
BERT-MRC+DSC
84.47
-
-
Dice Loss for Data-imbalanced NLP Tasks
-
Glyce + BERT
80.62
81.87
81.4
Glyce: Glyph-vectors for Chinese Character Representations
-
0 of 15 row(s) selected.
Previous
Next
Chinese Named Entity Recognition On Ontonotes | SOTA | HyperAI超神経