HyperAI
HyperAI超神経
ホーム
プラットフォーム
ドキュメント
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
Command Palette
Search for a command to run...
ホーム
SOTA
異常検出
Anomaly Detection On One Class Imagenet 30
Anomaly Detection On One Class Imagenet 30
評価指標
AUROC
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
AUROC
Paper Title
Repository
BCE-Clip (OE)
99.90
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
CLIP (Zero Shot)
99.88
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
Binary Cross Entropy (OE)
97.7
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
CSI
91.6
CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
FCDD
91
Explainable Deep One-Class Classification
RotNet + Translation + Self-Attention + Resize
85.7
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
RotNet + Translation + Self-Attention
84.8
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
RotNet + Self-Attention
81.6
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
RotNet + Translation
77.9
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
RotNet
65.3
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Supervised (OE)
56.1
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
0 of 11 row(s) selected.
Previous
Next