HyperAI超神経

Action Recognition In Videos On Hmdb 51

評価指標

Average accuracy of 3 splits

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

比較表
モデル名Average accuracy of 3 splits
action-recognition-with-trajectory-pooled65.9
end-to-end-learning-of-motion-representation72.6
late-temporal-modeling-in-3d-cnn85.10
contextual-action-cues-from-camera-sensor-for80.92
learning-discriminative-video-representations74.3
actionflownet-learning-motion-representation56.4
appearance-and-relation-networks-for-video70.9
vimpac-video-pre-training-via-masked-token65.9
two-stream-convolutional-networks-for-action59.4
rethinking-spatiotemporal-feature-learning75.9
a-closer-look-at-spatiotemporal-convolutions76.4
videomoco-contrastive-video-representation49.2
high-order-tensor-pooling-with-attention-for85.70
quo-vadis-action-recognition-a-new-model-and77.3
representation-flow-for-action-recognition81.1
faster-recurrent-networks-for-video75.7
a-closer-look-at-spatiotemporal-convolutions66.6
dynamic-image-networks-for-action-recognition65.2
convnet-architecture-search-for54.9
paying-more-attention-to-motion-attention72.0
videomoco-contrastive-video-representation43.6
quo-vadis-action-recognition-a-new-model-and80.9
d3d-distilled-3d-networks-for-video-action80.5
omni-sourced-webly-supervised-learning-for83.8
quo-vadis-action-recognition-a-new-model-and80.7
learning-spatio-temporal-representation-with-378.9
d3d-distilled-3d-networks-for-video-action78.7
temporal-segment-networks-towards-good69.4
dmc-net-generating-discriminative-motion-cues62.8
hidden-two-stream-convolutional-networks-for78.7
quo-vadis-action-recognition-a-new-model-and74.3
distinit-learning-video-representations54.8
quo-vadis-action-recognition-a-new-model-and77.1
pose-and-joint-aware-action-recognition54.2
learning-spatiotemporal-features-with-3d51.6
convolutional-two-stream-network-fusion-for65.4
pose-and-joint-aware-action-recognition84.53
spatiotemporal-residual-networks-for-video70.3
r-stan-residual-spatial-temporal-attention55.16
self-supervised-video-transformer67.2
r-stan-residual-spatial-temporal-attention62.8
holistic-large-scale-video-understanding76.5
optical-flow-guided-feature-a-fast-and-robust74.2
learning-spatio-temporal-representations-with71.5
a-closer-look-at-spatiotemporal-convolutions78.7
dmc-net-generating-discriminative-motion-cues71.8
smart-frame-selection-for-action-recognition84.36
tensor-representations-for-action-recognition86.11
d3d-distilled-3d-networks-for-video-action79.3
a-closer-look-at-spatiotemporal-convolutions74.5
learning-spatio-temporal-representation-with-375.7
hierarchical-feature-aggregation-networks-for71.13
spatiotemporal-multiplier-networks-for-video72.2
bubblenet-a-disperse-recurrent-structure-to82.60
motionsqueeze-neural-motion-feature-learning77.4
a-closer-look-at-spatiotemporal-convolutions72.7
dmc-net-generating-discriminative-motion-cues77.8
hallucinating-statistical-moment-and-subspace87.56
cooperative-cross-stream-network-for81.9
hallucinating-bag-of-words-and-fisher-vector82.48
video-classification-with-finecoarse-networks77.6
ts-lstm-and-temporal-inception-exploiting69
videomae-v2-scaling-video-masked-autoencoders88.1
vidtr-video-transformer-without-convolutions74.4
susinet-see-understand-and-summarize-it62.7
learning-spatio-temporal-representation-with-380.5
a-closer-look-at-spatiotemporal-convolutions70.1
mars-motion-augmented-rgb-stream-for-action80.9
quo-vadis-action-recognition-a-new-model-and74.8
perf-net-pose-empowered-rgb-flow-net83.2
long-term-temporal-convolutions-for-action64.8
bidirectional-cross-modal-knowledge83.1
towards-universal-representation-for-unseen51.8
asymmetric-masked-distillation-for-pre79.6
zeroi2v-zero-cost-adaptation-of-pre-trained83.4
high-order-tensor-pooling-with-attention-for87.21