Action Recognition In Videos
コンピュータビジョンは、機械が画像や動画を解釈し理解する技術です。この技術の目的は、人間の視覚システムを模倣することで複雑なシーンの自動認識と分析を実現することです。コンピュータビジョンは医療画像診断、自動運転、セキュリティ監視などの分野で広く応用されており、効率性と精度を大幅に向上させ、知能化社会の発展に寄与しています。
ActionNet-VE
ActivityNet
Text4Vis (w/ ViT-L)
Animal Kingdom
AVA v2.1
AVA v2.2
LART (Hiera-H, K700 PT+FT)
BAR
Charades
Charades-Ego
LaViLa (Finetuned, TimeSformer-L)
Diving-48
Drone-Action
DVS128 Gesture
EgoGesture
EPIC-KITCHENS-55
EPIC-KITCHENS-100
Avion (ViT-L)
H2O (2 Hands and Objects)
HandFormer-B/21x8
HAA500
HACS
UniFormerV2-L
HMDB-51
VideoMAE V2-g
HMDB51
MSQNet
Hockey
ICVL-4
IndustReal
IRD
Jester (Gesture Recognition)
DirecFormer
KTH
CNN-GRU
MECCANO
SlowFast
Mimetics
JMRN
miniSports
MTL-AQA
C3D-AVG
N-UCLA
DVANet
NEC Drone
NTU RGB+D
PoseC3D (RGB + Pose)
NTU RGB+D 120
PoseC3D (RGB + Pose)
Okutama-Action
Penn Action
RareAct
Real Life Violence Situations Dataset
DeVTr
RoCoG-v2
Skeleton-Mimetics
SL-Animals
SEW-Resnet18 (3sets)
Something-Something V1
InternVideo
Something-Something V2
MVD (Kinetics400 pretrain, ViT-H, 16 frame)
Sports-1M
ip-CSN-152 (RGB)
THUMOS’14
BMN
THUMOS14
UAV-Human
PMI Sampler
UAV Human
FAR
UCF-101
R3D-18
UCF 101
R2+1D-BERT
UCF101
VideoMAE V2-g
UCFSports
UTD-MHAD
VIRAT Ground 2.0
Volleyball
PoseC3D (Pose Only)
Win-Fail Action Understanding
2DCNN+TRN