HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
3D Object Detection
3D Object Detection On Kitti Cyclists Hard
3D Object Detection On Kitti Cyclists Hard
評価指標
AP
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
AP
Paper Title
Repository
SVGA-Net
57.64%
SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds
-
VoxelNet
44.37%
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
STD
55.77%
STD: Sparse-to-Dense 3D Object Detector for Point Cloud
-
PV-RCNN
57.65%
PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
PointRCNN
53.59%
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud
SA-Det3D
61.33%
SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection
AVOD + Feature Pyramid
46.61%
Joint 3D Proposal Generation and Object Detection from View Aggregation
IPOD
48.34%
IPOD: Intensive Point-based Object Detector for Point Cloud
-
Frustum PointNets
50.39%
Frustum PointNets for 3D Object Detection from RGB-D Data
PointPillars
52.92%
PointPillars: Fast Encoders for Object Detection from Point Clouds
F-ConvNets
57.03%
Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection
M3DeTR
59.03%
M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers
0 of 12 row(s) selected.
Previous
Next