HyperAI
HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
3D物体検出
3D Object Detection On Kitti Cyclists Easy
3D Object Detection On Kitti Cyclists Easy
評価指標
AP
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
AP
Paper Title
Repository
Frustum PointNets
71.96%
Frustum PointNets for 3D Object Detection from RGB-D Data
-
PointRCNN
73.93%
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud
-
VoxelNet
61.22%
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
-
AVOD + Feature Pyramid
64.0%
Joint 3D Proposal Generation and Object Detection from View Aggregation
-
M3DeTR
83.83%
M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers
-
STD
78.89%
STD: Sparse-to-Dense 3D Object Detector for Point Cloud
-
F-ConvNet
79.58%
Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection
-
3D-FCT
89.15%
3D-FCT: Simultaneous 3D Object Detection and Tracking Using Feature Correlation
-
IPOD
71.40%
IPOD: Intensive Point-based Object Detector for Point Cloud
-
SVGA-Net
79.22%
SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds
-
PointPillars
75.78%
PointPillars: Fast Encoders for Object Detection from Point Clouds
-
PV-RCNN
78.60%
PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
-
0 of 12 row(s) selected.
Previous
Next
3D Object Detection On Kitti Cyclists Easy | SOTA | HyperAI超神経