HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
3D Object Detection
3D Object Detection On Kitti Cyclists Easy
3D Object Detection On Kitti Cyclists Easy
評価指標
AP
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
AP
Paper Title
Repository
Frustum PointNets
71.96%
Frustum PointNets for 3D Object Detection from RGB-D Data
PointRCNN
73.93%
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud
VoxelNet
61.22%
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
AVOD + Feature Pyramid
64.0%
Joint 3D Proposal Generation and Object Detection from View Aggregation
M3DeTR
83.83%
M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers
STD
78.89%
STD: Sparse-to-Dense 3D Object Detector for Point Cloud
-
F-ConvNet
79.58%
Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection
3D-FCT
89.15%
3D-FCT: Simultaneous 3D Object Detection and Tracking Using Feature Correlation
-
IPOD
71.40%
IPOD: Intensive Point-based Object Detector for Point Cloud
-
SVGA-Net
79.22%
SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds
-
PointPillars
75.78%
PointPillars: Fast Encoders for Object Detection from Point Clouds
PV-RCNN
78.60%
PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
0 of 12 row(s) selected.
Previous
Next