3D Object Detection On Kitti Cyclists
評価指標
AP
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
比較表
モデル名 | AP |
---|---|
eloss-in-the-way-a-sensitive-input-quality | 58% |
frustum-convnet-sliding-frustums-to-aggregate | 64.68% |
joint-3d-proposal-generation-and-object | 52.18% |
pointpillars-fast-encoders-for-object | 59.07% |
pointrcnn-3d-object-proposal-generation-and | 59.60% |
3d-fct-simultaneous-3d-object-detection-and | 75.86% |
svga-net-sparse-voxel-graph-attention-network | 66.13% |
voxelnet-end-to-end-learning-for-point-cloud | 48.36% |
pv-rcnn-point-voxel-feature-set-abstraction | 63.71% |
m3detr-multi-representation-multi-scale | 66.74% |
frustum-pointnets-for-3d-object-detection | 56.77% |
ipod-intensive-point-based-object-detector | 53.46% |
std-sparse-to-dense-3d-object-detector-for | 62.53% |