Command Palette
Search for a command to run...
Sports Ball Detection And Tracking On Sbdt
Métriques
Accuracy (% )
Average Precision (%)
F1 (%)
Résultats
Résultats de performance de divers modèles sur ce benchmark
| Paper Title | ||||
|---|---|---|---|---|
| WASB (Step=1) | 97.9 | 86.2 | 88.2 | Widely Applicable Strong Baseline for Sports Ball Detection and Tracking |
| WASB (Step=3) | 97.9 | 83.6 | 88.3 | Widely Applicable Strong Baseline for Sports Ball Detection and Tracking |
| TrackNetV2 | 97.7 | 77.2 | 86.6 | TrackNetV2: Efficient Shuttlecock Tracking Network |
| MonoTrack | 97.4 | 78.6 | 85.2 | MonoTrack: Shuttle trajectory reconstruction from monocular badminton video |
| ResTrackNetV2 | 97.4 | 75.5 | 84.6 | Widely Applicable Strong Baseline for Sports Ball Detection and Tracking |
| DeepBall | 92.7 | 26.3 | 44.5 | DeepBall: Deep Neural-Network Ball Detector |
| BallSeg | 92.6 | 20.0 | 36.1 | Real-time CNN-based Segmentation Architecture for Ball Detection in a Single View Setup |
| DeepBall-Large | 89.5 | 34.0 | 44.9 | Widely Applicable Strong Baseline for Sports Ball Detection and Tracking |
0 of 8 row(s) selected.