Point Cloud Registration On 3Dlomatch 10 30
Métriques
Recall ( correspondence RMSE below 0.2)
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | Recall ( correspondence RMSE below 0.2) |
---|---|
regtr-end-to-end-point-cloud-correspondences | 64.8 |
the-perfect-match-3d-point-cloud-matching | 33 |
pcam-product-of-cross-attention-matrices-for | 54.9 |
deep-global-registration | 48.7 |
fully-convolutional-geometric-features | 40.1 |
d3feat-joint-learning-of-dense-detection-and | 37.2 |
predator-registration-of-3d-point-clouds-with | 62.5 |
omnet-learning-overlapping-mask-for-partial | 8.4 |
neighborhood-aware-geometric-encoding-network | 71.9 |
geometric-transformer-for-fast-and-robust | 74 |
predator-registration-of-3d-point-clouds-with | 59.8 |
predator-registration-of-3d-point-clouds-with | 24 |