HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Node Classification
Node Classification On Citeseer 05
Node Classification On Citeseer 05
Métriques
Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
Paper Title
Repository
Snowball (linear + tanh)
61.99%
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
LanczosNet
53.2 ± 4.0
LanczosNet: Multi-Scale Deep Graph Convolutional Networks
GGNN
44.3%
Gated Graph Convolutional Recurrent Neural Networks
Snowball (tanh)
62.05%
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
GraphSAGE
33.8%
Inductive Representation Learning on Large Graphs
MT-GCN
67.7%
Mutual Teaching for Graph Convolutional Networks
GCN-FP
43.9%
Convolutional Networks on Graphs for Learning Molecular Fingerprints
DCNN
53.1%
Diffusion-Convolutional Neural Networks
VCHN
65.6%
View-Consistent Heterogeneous Network on Graphs With Few Labeled Nodes
AdaLanczosNet
53.8 ± 4.7
LanczosNet: Multi-Scale Deep Graph Convolutional Networks
ChebyNet
45.3%
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
Truncated Krylov
64.64%
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
GAT
38.2%
Graph Attention Networks
Snowball (linear)
59.41%
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
0 of 14 row(s) selected.
Previous
Next