Monocular Depth Estimation On Nyu Depth V2
Métriques
Delta u003c 1.25
Delta u003c 1.25^2
Delta u003c 1.25^3
RMSE
absolute relative error
log 10
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | Delta u003c 1.25 | Delta u003c 1.25^2 | Delta u003c 1.25^3 | RMSE | absolute relative error | log 10 |
---|---|---|---|---|---|---|
unik3d-universal-camera-monocular-3d | 0.989 | 0.998 | 1.000 | 0.173 | 0.044 | 0.019 |
global-local-path-networks-for-monocular | 0.915 | 0.988 | 0.997 | 0.344 | 0.098 | 0.042 |
depth-map-decomposition-for-monocular-depth | 0.907 | 0.986 | 0.997 | 0.362 | 0.100 | 0.043 |
structure-attentioned-memory-network-for | - | - | - | 0.604 | - | - |
zero-shot-metric-depth-with-a-field-of-view | 0.953 | 0.989 | 0.996 | 0.296 | 0.072 | 0.031 |
primedepth-efficient-monocular-depth | 0.977 | - | - | - | 0.046 | - |
hybriddepth-robust-depth-fusion-for-mobile-ar | 0.988 | 1.000 | 1.000 | 0.128 | 0.026 | - |
unsupervised-depth-learning-in-challenging | 0.820 | 0.956 | - | 0.532 | 0.138 | 0.059 |
p3depth-monocular-depth-estimation-with-a | 0.898 | 0.981 | 0.996 | 0.356 | 0.104 | 0.043 |
vision-transformers-for-dense-prediction | 0.904 | 0.988 | 0.994 | 0.357 | 0.110 | 0.045 |
metric3d-v2-a-versatile-monocular-geometric-1 | 0.989 | 0.998 | 1.000 | 0.183 | 0.047 | 0.020 |
dinov2-learning-robust-visual-features | 0.9497 | 0.996 | 0.9994 | 0.279 | 0.0907 | 0.0371 |
localbins-improving-depth-estimation-by | 0.91 | 0.986 | 0.997 | 0.351 | 0.098 | 0.042 |
futuredepth-learning-to-predict-the-future | 0.981 | 0.996 | 0.999 | 0.233 | 0.063 | 0.027 |
on-deep-learning-techniques-to-boost | - | - | - | 0.429 | - | - |
a-two-streamed-network-for-estimating-fine | - | - | - | 0.635 | - | - |
metric3d-towards-zero-shot-metric-3d | 0.944 | 0.986 | 0.995 | 0.310 | 0.083 | 0.035 |
depth-map-decomposition-for-monocular-depth | 0.913 | 0.987 | 0.998 | 0.355 | 0.098 | 0.042 |
nddepth-normal-distance-assisted-monocular | 0.936 | 0.991 | 0.998 | 0.311 | 0.087 | 0.038 |
unidepth-universal-monocular-metric-depth | 0.984 | 0.997 | 0.999 | 0.201 | 0.058 | 0.024 |
repurposing-diffusion-based-image-generators | 0.964 | 0.991 | 0.998 | 0.224 | 0.055 | 0.024 |
unidepthv2-universal-monocular-metric-depth | 0.988 | 0.998 | 1.000 | 0.180 | 0.046 | 0.020 |
index-network | - | - | - | 0.565 | - | - |
nvs-monodepth-improving-monocular-depth | - | - | - | 0.331 | - | - |
monocular-depth-estimation-using-diffusion | 0.946 | 0.987 | 0.996 | 0.314 | 0.074 | 0.032 |
new-crfs-neural-window-fully-connected-crfs-1 | 0.922 | 0.992 | 0.998 | 0.334 | 0.095 | 0.041 |
va-depthnet-a-variational-approach-to-single | 0.937 | 0.992 | 0.999 | 0.304 | 0.086 | 0.037 |
cutdepth-edge-aware-data-augmentation-in | 0.899 | 0.985 | 0.997 | 0.375 | 0.104 | 0.044 |
deep-ordinal-regression-network-for-monocular | - | - | - | 0.509 | - | - |
depthformer-multiscale-vision-transformer-for | 0.913 | 0.988 | 0.997 | 0.345 | 0.100 | 0.042 |
analysis-of-nan-divergence-in-training | 0.9361 | 0.9916 | 0.9981 | 0.3046 | 0.0864 | 0.0365 |
d-net-a-generalised-and-optimised-deep | 0.919 | 0.988 | 0.997 | 0.354 | 0.095 | 0.041 |
harnessing-diffusion-models-for-visual | 0.976 | 0.997 | 0.999 | 0.223 | 0.061 | 0.027 |
improving-deep-regression-with-ordinal | 0.932 | - | - | 0.321 | 0.089 | 0.039 |
fast-neural-architecture-search-of-compact | - | - | - | 0.526 | - | - |
mesa-masked-geometric-and-supervised-pre | 0.964 | 0.995 | 0.999 | 0.238 | 0.066 | 0.029 |
fine-tuning-image-conditional-diffusion | 0.966 | - | - | - | 0.052 | - |
zoedepth-zero-shot-transfer-by-combining | 0.955 | 0.995 | 0.999 | 0.270 | 0.075 | 0.032 |
revealing-the-dark-secrets-of-masked-image | 0.949 | 0.994 | 0.999 | 0.287 | 0.083 | 0.035 |
prompt-guided-transformer-for-multi-task | - | - | - | 0.5468 | - | - |
prompt-guided-transformer-for-multi-task | - | - | - | 0.59 | - | - |
190508598 | - | - | - | 0.496 | - | - |
generating-and-exploiting-probabilistic | - | - | - | 0.536 | - | - |
ddp-diffusion-model-for-dense-visual | 0.921 | 0.990 | 0.998 | 0.329 | 0.094 | 0.040 |
adabins-depth-estimation-using-adaptive-bins | 0.903 | 0.984 | 0.997 | 0.364 | 0.103 | 0.044 |
polymax-general-dense-prediction-with-mask | 0.969 | 0.9958 | 0.999 | 0.25 | 0.067 | 0.029 |
pattern-affinitive-propagation-across-depth-1 | - | - | - | 0.497 | - | - |
from-big-to-small-multi-scale-local-planar | - | - | 0.995 | 0.392 | - | - |
unleashing-text-to-image-diffusion-models-for-1 | 0.964 | 0.995 | 0.999 | 0.254 | 0.069 | 0.030 |
large-scale-monocular-depth-estimation-in-the | 0.931 | 0.986 | 0.996 | 0.364 | 0.080 | 0.033 |
ecodepth-effective-conditioning-of-diffusion | 0.978 | 0.997 | 0.999 | 0.218 | 0.059 | 0.026 |
grin-zero-shot-metric-depth-with-pixel-level | - | - | - | 0.251 | 0.051 | - |
predicting-depth-surface-normals-and-semantic | - | - | - | 0.641 | - | - |
irondepth-iterative-refinement-of-single-view | 0.910 | 0.985 | 0.997 | 0.352 | 0.101 | 0.043 |
attention-based-context-aggregation-network | - | - | - | 0.496 | - | - |
real-time-joint-semantic-segmentation-and | - | - | - | 0.565 | - | - |
sdc-depth-semantic-divide-and-conquer-network | - | - | - | 0.497 | - | - |
iebins-iterative-elastic-bins-for-monocular-1 | 0.936 | 0.992 | 0.998 | 0.314 | 0.087 | 0.038 |
binsformer-revisiting-adaptive-bins-for | 0.925 | 0.989 | 0.997 | 0.330 | 0.094 | 0.040 |
revisiting-single-image-depth-estimation | - | - | - | 0.530 | - | - |
all-in-tokens-unifying-output-space-of-visual | 0.954 | 0.994 | 0.999 | 0.275 | 0.076 | 0.033 |
structure-aware-residual-pyramid-network-for | - | - | - | 0.514 | - | - |
fast-neural-architecture-search-of-compact | - | - | - | 0.523 | - | - |
enforcing-geometric-constraints-of-virtual | 0.875 | 0.976 | 0.989 | 0.416 | 0.111 | 0.048 |
monocular-depth-estimation-using-laplacian | 0.895 | 0.983 | 0.996 | 0.384 | 0.105 | 0.045 |
high-quality-monocular-depth-estimation-via | - | - | - | 0.465 | - | - |
primedepth-efficient-monocular-depth | 0.966 | - | - | - | 0.058 | - |
idisc-internal-discretization-for-monocular | - | 0.993 | 0.999 | - | 0.086 | - |
text-image-alignment-for-diffusion-based | 0.976 | 0.997 | 0.999 | 0.225 | 0.062 | 0.027 |
attention-attention-everywhere-monocular | 0.929 | 0.991 | 0.998 | 0.322 | 0.090 | 0.039 |
depth-anything-unleashing-the-power-of-large | 0.984 | 0.998 | 1.000 | 0.206 | 0.056 | 0.024 |
depthmaster-taming-diffusion-models-for | 0.972 | - | - | - | 0.050 | - |
single-image-depth-estimation-trained-via-1 | - | - | - | 0.575 | - | - |
fast-neural-architecture-search-of-compact | - | - | - | 0.525 | - | - |
neural-video-depth-stabilizer | 0.9493 | 0.991 | 0.997 | 0.282 | 0.072 | 0.031 |
depthformer-exploiting-long-range-correlation | 0.921 | 0.989 | 0.998 | 0.339 | 0.096 | 0.041 |
urcdc-depth-uncertainty-rectified-cross | 0.933 | 0.992 | 0.998 | 0.316 | 0.088 | 0.038 |
monocular-depth-estimation-using-relative | - | - | - | 0.538 | - | - |
multi-scale-continuous-crfs-as-sequential | - | - | - | 0.586 | - | - |
learning-to-recover-3d-scene-shape-from-a | 0.916 | - | - | - | 0.09 | - |
inverted-pyramid-multi-task-transformer-for | - | - | - | 0.5183 | - | - |
focal-wnet-an-architecture-unifying | 0.875 | 0.980 | 0.995 | 0.398 | 0.116 | 0.048 |
scaledepth-decomposing-metric-depth | 0.957 | 0.994 | 0.999 | 0.267 | 0.074 | 0.032 |
evp-enhanced-visual-perception-using-inverse | 0.976 | 0.997 | 0.999 | 0.224 | 0.061 | 0.027 |
distill-any-depth-distillation-creates-a | 0.981 | - | - | - | 0.043 | - |