HyperAI
HyperAI
Accueil
Actualités
Articles de recherche récents
Tutoriels
Ensembles de données
Wiki
SOTA
Modèles LLM
Classement GPU
Événements
Recherche
À propos
Français
HyperAI
HyperAI
Toggle sidebar
Rechercher sur le site...
⌘
K
Accueil
SOTA
Classification de graphes
Graph Classification On Mutag
Graph Classification On Mutag
Métriques
Accuracy
Résultats
Résultats de performance de divers modèles sur ce benchmark
Columns
Nom du modèle
Accuracy
Paper Title
Repository
GAP-Layer (Ncut)
86.9%
DiffWire: Inductive Graph Rewiring via the Lovász Bound
-
VRGC
86.3%
Variational Recurrent Neural Networks for Graph Classification
-
GDL-g (SP)
87.09%
Online Graph Dictionary Learning
-
GIN-0
89.4%
How Powerful are Graph Neural Networks?
-
WKPI-kcenters
87.5%
Learning metrics for persistence-based summaries and applications for graph classification
-
FGW wl h=2 sp
86.42%
Optimal Transport for structured data with application on graphs
-
ApproxRepSet
86.33%
Rep the Set: Neural Networks for Learning Set Representations
-
Function Space Pooling
83.3%
IsoNN: Isomorphic Neural Network for Graph Representation Learning and Classification
-
NDP
84.7%
Hierarchical Representation Learning in Graph Neural Networks with Node Decimation Pooling
-
PATCHY-SAN
92.63%
Learning Convolutional Neural Networks for Graphs
-
Path up to length h
88.47%
Graph Kernels Based on Linear Patterns: Theoretical and Experimental Comparisons
SPI-GCN
84.40%
SPI-GCN: A Simple Permutation-Invariant Graph Convolutional Network
-
DGCNN
85.83%
An End-to-End Deep Learning Architecture for Graph Classification
P-WL-C
-
A Persistent Weisfeiler–Lehman Procedure for Graph Classification
-
edGNN (max)
88.8%
edGNN: a Simple and Powerful GNN for Directed Labeled Graphs
-
hGANet
90.00%
Graph Representation Learning via Hard and Channel-Wise Attention Networks
-
CT-Layer
87.58%
DiffWire: Inductive Graph Rewiring via the Lovász Bound
-
U2GNN (Unsupervised)
88.47%
Universal Graph Transformer Self-Attention Networks
-
R-GIN + PANDA
88.2%
PANDA: Expanded Width-Aware Message Passing Beyond Rewiring
-
k-GNN
86.1%
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
-
0 of 74 row(s) selected.
Previous
Next
Graph Classification On Mutag | SOTA | HyperAI