Formation Energy On Qm9
Métriques
MAE
Résultats
Résultats de performance de divers modèles sur ce benchmark
Tableau comparatif
Nom du modèle | MAE |
---|---|
physnet-a-neural-network-for-predicting | 0.19 |
tensornet-cartesian-tensor-representations | 0.09 |
neural-message-passing-with-edge-updates-for | 0.314 |
hierarchical-modeling-of-molecular-energies | 0.256 |
wigner-kernels-body-ordered-equivariant | 0.100 ± 0.003 |
a-universal-framework-for-accurate-and-1 | 0.136 |
molecular-mechanics-driven-graph-neural | 0.137 |
graph-networks-as-a-universal-machine | 0.21 |
heterogeneous-molecular-graph-neural-networks | 0.138 |
atomistic-line-graph-neural-network-for | 0.30 |
directional-message-passing-for-molecular-1 | 0.185 |
neural-message-passing-with-edge-updates-for | 0.242 |
neural-message-passing-for-quantum-chemistry | 0.49 |
machine-learning-prediction-errors-better | 0.58 |
transferable-multi-level-attention-neural | 0.141 |
graph-networks-as-a-universal-machine | 0.28 |
physnet-a-neural-network-for-predicting | 0.14 |
scalable-gaussian-process-regression-enables | 0.167 |