HyperAI

Formation Energy On Qm9

Métriques

MAE

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleMAE
physnet-a-neural-network-for-predicting0.19
tensornet-cartesian-tensor-representations0.09
neural-message-passing-with-edge-updates-for0.314
hierarchical-modeling-of-molecular-energies0.256
wigner-kernels-body-ordered-equivariant0.100 ± 0.003
a-universal-framework-for-accurate-and-10.136
molecular-mechanics-driven-graph-neural0.137
graph-networks-as-a-universal-machine0.21
heterogeneous-molecular-graph-neural-networks0.138
atomistic-line-graph-neural-network-for0.30
directional-message-passing-for-molecular-10.185
neural-message-passing-with-edge-updates-for0.242
neural-message-passing-for-quantum-chemistry0.49
machine-learning-prediction-errors-better0.58
transferable-multi-level-attention-neural0.141
graph-networks-as-a-universal-machine0.28
physnet-a-neural-network-for-predicting0.14
scalable-gaussian-process-regression-enables0.167