HyperAI

3D Point Cloud Classification On Scanobjectnn

Métriques

Mean Accuracy
OBJ-BG (OA)
OBJ-ONLY (OA)
Overall Accuracy

Résultats

Résultats de performance de divers modèles sur ce benchmark

Tableau comparatif
Nom du modèleMean AccuracyOBJ-BG (OA)OBJ-ONLY (OA)Overall Accuracy
point2vec-for-self-supervised-representation86.091.290.487.5
ulip-2-towards-scalable-multimodal-pre---89.0
point-bert-pre-training-3d-point-cloud-87.4388.1283.1
parameter-is-not-all-you-need-starting-from---87.1
ulip-2-towards-scalable-multimodal-pre90.3--90.8
pointnet-deep-learning-on-point-sets-for-3d63.4--68.2
patchaugment-local-neighborhood-augmentation79.7--81.0
mamba3d-enhancing-local-features-for-3d-point-92.9492.0891.81
points-to-patches-enabling-the-use-of-self81.0--83.5
point-jepa-a-joint-embedding-predictive-92.9±0.4--
rethinking-the-compositionality-of-point87.0--88.3
surface-representation-for-point-clouds---84.6
autoencoders-as-cross-modal-teachers-can---89.17
contrast-with-reconstruct-contrastive-3d-95.1893.2990.63
revisiting-point-cloud-classification-with-a---80.5
learning-3d-representations-from-2d-pre-94.1591.5790.11
kpconvx-modernizing-kernel-point-convolution88.1--89.3
ulip-learning-unified-representation-of---86.4
surface-representation-for-point-clouds---86.0
pointnext-revisiting-pointnet-with-improved86.8--88.2
beyond-first-impressions-integrating-joint88.7--89.5
dynamic-local-geometry-capture-in-3d---82.0
mvtn-multi-view-transformation-network-for-3d-92.692.382.8
p2p-tuning-pre-trained-image-models-for-point---89.3
pointgpt-auto-regressively-generative-pre-1-97.296.693.4
autoencoders-as-cross-modal-teachers-can-93.2991.9188.21
sagemix-saliency-guided-mixup-for-point---83.6
modelnet-o-a-large-scale-synthetic-dataset---86.6
a-deep-dive-into-explainable-self-supervised-90.8890.02-
ulip-2-towards-scalable-multimodal-pre91.2--91.5
point-cloud-classification-using-content88.5--90.3
advanced-feature-learning-on-point-clouds86.2--87.2
gpsformer-a-global-perception-and-local92.51--93.30
point-m2ae-multi-scale-masked-autoencoders-91.2288.8186.43
positional-prompt-tuning-for-efficient-3d-95.0193.2889.52
beyond-local-patches-preserving-global-local87.2--89.0
3d-jepa-a-joint-embedding-predictive-93.6394.4989.52
masked-autoencoders-for-point-cloud-self-90.0288.2985.2
0-4-dualities---88.4
sagemix-saliency-guided-mixup-for-point---83.7
rethinking-network-design-and-local-geometry-181.8-- 83.8
instance-aware-dynamic-prompt-tuning-for-pre-93.12-88.51
gpsformer-a-global-perception-and-local93.8--95.4
let-images-give-you-more-point-cloud-cross84.8--86.7
app-net-auxiliary-point-based-push-and-pull---84.1
self-positioning-point-based-transformer-for86.8--88.6
rethinking-masked-representation-learning-for-92.992.389.0
mamba3d-enhancing-local-features-for-3d-point-94.4992.4392.64
pra-net-point-relation-aware-network-for-3d79.1--82.1
shapellm-universal-3d-object-understanding-98.8097.5995.25
pcp-mae-learning-to-predict-centers-for-point-95.5294.3290.35
point-cloud-classification-using-content86.0--88.0
deltaconv-anisotropic-point-cloud-learning---84.7
point-lgmask-local-and-global-contexts-89.889.385.3
dense-resolution-network-for-point-cloud78.0--80.3
towards-compact-3d-representations-via-point-95.1893.2990.22
omnivec-learning-robust-representations-with---96.1
pointcnn-convolution-on-mathcalx-transformed75.186.185.578.5
regress-before-construct-regress-autoencoder-95.5393.6390.28
take-a-photo-3d-to-2d-generative-pre-training---88.5
pointnet-deep-hierarchical-feature-learning75.482.384.377.9
dynamic-graph-cnn-for-learning-on-point73.682.886.278.1
omnivec2-a-novel-transformer-based-network---97.2
dualmlp-a-two-stream-fusion-model-for-3d---86.4
local-neighborhood-features-for-3d-187.4--88.6
spidercnn-deep-learning-on-point-sets-with69.8--73.7
simpleview-neighborhood-views-for-point-cloud---84.8
geometric-feedback-network-for-point-cloud77.8--80.5
point-is-a-vector-a-feature-representation-in86.2--87.8
parameter-efficient-fine-tuning-in-spectral-99.4897.7696.18
contrast-with-reconstruct-contrastive-3d-95.3593.8091.26
rethinking-network-design-and-local-geometry-184.4--85.7
decoupled-local-aggregation-for-point-cloud89.3--90.4
ulip-learning-unified-representation-of88.5--89.4
ulip-learning-unified-representation-of88.6--89.7