HyperAI
HyperAI
Home
Console
Docs
News
Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
Terms of Service
Privacy Policy
English
HyperAI
HyperAI
Toggle Sidebar
Search the site…
⌘
K
Command Palette
Search for a command to run...
Console
Home
SOTA
Video Salient Object Detection
Video Salient Object Detection On Fbms 59
Video Salient Object Detection On Fbms 59
Metrics
AVERAGE MAE
MAX F-MEASURE
S-Measure
Results
Performance results of various models on this benchmark
Columns
Model Name
AVERAGE MAE
MAX F-MEASURE
S-Measure
Paper Title
MB+M
0.206
0.487
0.609
Minimum Barrier Salient Object Detection at 80 FPS
TIMP
0.192
0.465
0.576
Time-Mapping Using Space-Time Saliency
MSTM
0.177
0.500
0.613
Real-Time Salient Object Detection With a Minimum Spanning Tree
SAGM
0.161
0.564
0.659
Saliency-Aware Geodesic Video Object Segmentation
SRP
0.134
0.671
0.684
-
MESO
0.134
0.618
0.635
-
RSE
0.128
0.652
0.670
-
SPD
0.125
0.686
0.691
-
FGRN
0.088
0.767
0.809
Flow Guided Recurrent Neural Encoder for Video Salient Object Detection
LTSI
0.087
0.799
0.805
-
PDB
0.064
0.821
0.851
Pyramid Dilated Deeper ConvLSTM for Video Salient Object Detection
RCRNet+NER
0.054
0.861
0.870
Semi-Supervised Video Salient Object Detection Using Pseudo-Labels
MBNM
0.047
0.816
0.857
Unsupervised Video Object Segmentation with Motion-based Bilateral Networks
SSAV
0.040
0.865
0.879
Shifting More Attention to Video Salient Object Detection
UFO
0.028
0.890
0.894
A Unified Transformer Framework for Group-based Segmentation: Co-Segmentation, Co-Saliency Detection and Video Salient Object Detection
RealFlow
0.028
0.906
0.926
Transforming Static Images Using Generative Models for Video Salient Object Detection
0 of 16 row(s) selected.
Previous
Next
Video Salient Object Detection On Fbms 59 | SOTA | HyperAI