HyperAI

Few Shot Image Classification On Meta Dataset

Metrics

Accuracy

Results

Performance results of various models on this benchmark

Comparison Table
Model NameAccuracy
improving-few-shot-visual-classification-with70.32
prototypical-networks-for-few-shot-learning60.573
matching-networks-for-one-shot-learning56.247
improved-few-shot-visual-classification69.86
task-specific-preconditioner-for-cross-domain81.40
shallow-bayesian-meta-learning-for-real-world74.3
meta-dataset-a-dataset-of-datasets-for63.428
contextual-squeeze-and-excitation-for76.1
improving-task-adaptation-for-cross-domain78.07
meta-dataset-a-dataset-of-datasets-for54.319
selecting-relevant-features-from-a-universal70.72
selecting-relevant-features-from-a-universal69.3
universal-representation-learning-from75.75
exploring-complementary-strengths-of68.89
meta-dataset-a-dataset-of-datasets-for58.758
contextual-squeeze-and-excitation-for74.9
model-agnostic-meta-learning-for-fast57.024
a-universal-representation-transformer-layer72.15
fast-and-flexible-multi-task-classification66.9
pushing-the-limits-of-simple-pipelines-for84.75
unleashing-the-power-of-meta-tuning-for-few85.27
learning-to-compare-relation-network-for-few53.315