HyperAI

Few Shot Image Classification

Few-Shot Image Classification is a computer vision task aimed at training machine learning models to classify new images using only a few labeled samples (typically fewer than 6). The goal of this task is to enable the model to quickly recognize and classify new categories with minimal supervision and data requirements, thereby enhancing its generalization capability under conditions of limited data. This technology holds significant practical value, especially in scenarios where data acquisition is challenging or expensive.

aPY - 0-Shot
TAFE-Net
AWA - 0-Shot
Synthesised Classifier
AWA1 - 0-Shot
AWA2 - 0-Shot
Bongard-HOI
Human (Amateur)
Caltech-256 5-way (1-shot)
Caltech-256 5-way (5-shot)
MergedNet-Concat
Caltech101
PRE
CIFAR-100
CIFAR-FS - 1-Shot Learning
pseudo-shots
CIFAR-FS - 5-Shot Learning
pseudo-shots
CIFAR-FS 5-way (1-shot)
PT+MAP+SF+SOT (transductive)
CIFAR-FS 5-way (5-shot)
PT+MAP+SF+SOT (transductive)
CIFAR100 5-way (1-shot)
CUB-200 - 0-Shot Learning
TAFE-Net
CUB-200-2011 - 0-Shot
Word CNN-RNN (DS-SJE Embedding)
CUB-200-2011 5-way (1-shot)
MATANet
CUB-200-2011 5-way (5-shot)
MATANet
CUB 200 5-way
EASY 3xResNet12 (transductive)
CUB 200 5-way 1-shot
PT+MAP+SF+BPA (transductive)
CUB 200 5-way 5-shot
PT+MAP+SF+SOT (transductive)
CUB 200 50-way (0-shot)
Prototypical Networks
Dirichlet CUB-200 (5-way, 1-shot)
Dirichlet CUB-200 (5-way, 5-shot)
Dirichlet Mini-Imagenet (5-way, 1-shot)
alpha-TIM
Dirichlet Mini-Imagenet (5-way, 5-shot)
alpha-TIM
Dirichlet Tiered-Imagenet (5-way, 1-shot)
Dirichlet Tiered-Imagenet (5-way, 5-shot)
alpha-TIM
FC100 5-way (1-shot)
R2-D2+Task Aug
FC100 5-way (10-shot)
MTL
FC100 5-way (5-shot)
Fewshot-CIFAR100 - 1-Shot Learning
pseudo-shots
Fewshot-CIFAR100 - 5-Shot Learning
pseudo-shots
Flowers-102 - 0-Shot
Word CNN-RNN (DS-SJE Embedding)
ImageNet - 0-Shot
DebiasPL (ResNet50)
ImageNet (1-shot)
ImageNet - 1-shot
ViT-MoE-15B (Every-2)
ImageNet - 10-shot
MAWS (ViT-6.5B)
ImageNet - 5-shot
ViT-MoE-15B (Every-2)
ImageNet-FS (1-shot, all)
ImageNet-FS (1-shot, novel)
ImageNet-FS (10-shot, all)
KGTN (ResNet-50)
ImageNet-FS (10-shot, novel)
ImageNet-FS (2-shot, all)
ImageNet-FS (2-shot, novel)
ImageNet-FS (5-shot, all)
KGTN-ens (ResNet-50, h+g, max)
ImageNet-FS (5-shot, novel)
iNaturalist 2018 - 1-shot
iNaturalist 2018 - 10-shot
iNaturalist 2018 - 5-shot
iNaturalist (227-way multi-shot)
LaplacianShot
Meta-Dataset
SMAT (DINO-VIT-Base-16-224)
Meta-Dataset Rank
URT
Mini-ImageNet - 1-Shot Learning
PT+MAP
Mini-Imagenet 10-way (1-shot)
Transductive CNAPS + FETI
Mini-Imagenet 10-way (5-shot)
Transductive CNAPS + FETI
mini-ImageNet - 100-Way
GCR
Mini-Imagenet 20-way (1-shot)
TIM-GD
Mini-Imagenet 20-way (5-shot)
TIM-GD
Mini-Imagenet 5-way (1-shot)
PT+MAP+SF+BPA (transductive)
Mini-Imagenet 5-way (10-shot)
PT+MAP
Mini-Imagenet 5-way (5-shot)
CAML [Laion-2b]
Mini-ImageNet-CUB 5-way (1-shot)
PT+MAP
Mini-ImageNet-CUB 5-way (5-shot)
TRIDENT
Mini-ImageNet to CUB - 5 shot learning
TIM-GD
miniImagenet → CUB (5-way 1-shot)
LaplacianShot
miniImagenet → CUB (5-way 5-shot)
LaplacianShot
OMNIGLOT - 1-Shot, 1000 way
APL
OMNIGLOT - 1-Shot, 20-way
GCR
OMNIGLOT - 1-Shot, 423 way
APL
OMNIGLOT - 1-Shot, 5-way
MC2+
OMNIGLOT - 5-Shot, 1000 way
OMNIGLOT - 5-Shot, 20-way
MC2+
OMNIGLOT - 5-Shot, 423 way
APL
OMNIGLOT - 5-Shot, 5-way
DCN6-E
OMNIGLOT-EMNIST 5-way (1-shot)
HyperShot
OMNIGLOT-EMNIST 5-way (5-shot)
ORBIT Clean Video Evaluation
SimpleCNAPs + LITE
ORBIT Clutter Video Evaluation
ProtoNetsVideo
Oxford 102 Flower
RS-FSL
Stanford Cars 5-way (1-shot)
MATANet
Stanford Cars 5-way (5-shot)
MATANet
Stanford Dogs 5-way (1-shot)
MML(KL)
Stanford Dogs 5-way (5-shot)
SUN - 0-Shot
Synthesised Classifier
Tiered ImageNet 10-way (1-shot)
Transductive CNAPS + FETI
Tiered ImageNet 10-way (5-shot)
Transductive CNAPS + FETI
Tiered ImageNet 5-way (1-shot)
PT+MAP
Tiered ImageNet 5-way (5-shot)
CAML [Laion-2b]
UT Zappos50K