HyperAI
HyperAI
Home
Console
Docs
News
Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
Terms of Service
Privacy Policy
English
HyperAI
HyperAI
Toggle Sidebar
Search the site…
⌘
K
Command Palette
Search for a command to run...
Console
Home
SOTA
3D Semantic Segmentation
3D Semantic Segmentation On Toronto 3D
3D Semantic Segmentation On Toronto 3D
Metrics
OA
mIoU
Results
Performance results of various models on this benchmark
Columns
Model Name
OA
mIoU
Paper Title
SCF-Net
95.50
73.60
SCF-Net: Learning Spatial Contextual Features for Large-Scale Point Cloud Segmentation
RandLANet
93.50
68.40
RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds
KPFCNN
91.71
60.30
Toronto-3D: A Large-scale Mobile LiDAR Dataset for Semantic Segmentation of Urban Roadways
TGNet
91.64
58.34
Toronto-3D: A Large-scale Mobile LiDAR Dataset for Semantic Segmentation of Urban Roadways
MS-PCNN
91.53
58.01
Toronto-3D: A Large-scale Mobile LiDAR Dataset for Semantic Segmentation of Urban Roadways
PointNet++
91.21
56.55
Toronto-3D: A Large-scale Mobile LiDAR Dataset for Semantic Segmentation of Urban Roadways
DGCNN
89.00
49.60
Toronto-3D: A Large-scale Mobile LiDAR Dataset for Semantic Segmentation of Urban Roadways
0 of 7 row(s) selected.
Previous
Next
3D Semantic Segmentation On Toronto 3D | SOTA | HyperAI