HyperAIHyperAI

Command Palette

Search for a command to run...

Towards automatic visual inspection: A weakly supervised learning method for industrial applicable object detection

Jianxin Liao: Jing Wang Qi Qi Haifeng Sun Jingyu Wang Ce Ge

Abstract

Industrial visual detection is an essential part in modern industry for equipment maintenance and inspection. With the recent progress of deep learning, advanced industrial object detectors are built for smart industrial applications. However, deep learning methods are known data-hungry: the processes of data collection and annotation are labor-intensive and time-consuming. It is especially impractical in industrial scenarios to collect publicly available datasets due to the inherent diversity and privacy. In this paper, we explore automation of industrial visual inspection and propose a segmentation-aggregation framework to learn object detectors from weakly annotated visual data. The used minimum annotation is only image-level category labels without bounding boxes. The method is implemented and evaluated on collected insulator images and public PASCAL VOC benchmarks to verify its effectiveness. The experiments show that our models achieve high detection accuracy and can be applied in industry to achieve automatic visual inspection with minimum annotation cost.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp