Command Palette
Search for a command to run...
Style-Guided Shadow Removal
Style-Guided Shadow Removal
Song Wang Yanting Liu Xinyi Wu Zhenyao Wu Hui Yin Jin Wan
Abstract
Shadow removal is an important topic in image restoration, and it can benefit many computer vision tasks. State-of-the-art shadow-removal methods typically employ deep learning by minimizing a pixel-level difference between the de-shadowed region and their corresponding (pseudo) shadow-free version. After shadow removal, the shadow and non-shadow regions may exhibit inconsistent appearance, leading to a visually disharmonious image. To address this problem, we propose a style-guided shadow removal network (SG-ShadowNet) for better image-style consistency after shadow removal. In SG-ShadowNet, we first learn the style representation of the non-shadow region via a simple region style estimator. Then we propose a novel effective normalization strategy with the region-level style to adjust the coarsely re-covered shadow region to be more harmonized with the rest of the image. Extensive experiments show that our proposed SG-ShadowNet outperforms all the existing competitive models and achieves a new state-of-the-art performance on ISTD+, SRD, and Video Shadow Removal benchmark datasets. Code is available at: https://github.com/jinwan1994/SG-ShadowNet.