HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

Unified differentiable learning of electric response

Stefano Falletta Andrea Cepellotti Anders Johansson Chuin Wei Tan Marc L. Descoteaux Albert Musaelian Cameron J. Owen Boris Kozinsky

Unified differentiable learning of electric response

Abstract

Predicting response of materials to external stimuli is a primary objective of computational materials science. However, current methods are limited to small-scale simulations due to the unfavorable scaling of computational costs. Here, we implement an equivariant machine-learning framework where response properties stem from exact differential relationships between a generalized potential function and applied external fields. Focusing on responses to electric fields, the method predicts electric enthalpy, forces, polarization, Born charges, and polarizability within a unified model enforcing the full set of exact physical constraints, symmetries and conservation laws. Through application to α−SiO2, we demonstrate that our approach can be used for predicting vibrational and dielectric properties of materials, and for conducting large-scale dynamics under arbitrary electric fields at unprecedented accuracy and scale. We apply our method to ferroelectric BaTiO3 and capture the temperature dependence, frequency dependence, and time evolution of the ferroelectric hysteresis, revealing the underlying intrinsic mechanisms of nucleation and growth that govern ferroelectric domain switching.

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Unified differentiable learning of electric response | Papers | HyperAI