HyperAIHyperAI

Command Palette

Search for a command to run...

PPformer: Using pixel-wise and patch-wise cross-attention for low-light image enhancement

X Qin Y Zhong J Dang

Abstract

Recently, transformer-based methods have shown strong competition compared to CNN-based methods on the low-light image enhancement task, by employing the self-attention for feature extraction. Transformer-based methods perform well in modeling long-range pixel dependencies, which are essential for low-light image enhancement to achieve better lighting, natural colors, and higher contrast. However, the high computational cost of self-attention limits its development in low-light image enhancement, while some works struggle to balance accuracy and computational cost. In this work, we propose a lightweight and effective network based on the proposed pixel-wise and patch-wise cross-attention mechanism, PPformer, for low-light image enhancement. PPformer is a CNN-transformer hybrid network that is divided into three parts: local-branch, global-branch, and Dual Cross-Attention. Each part plays a vital role in PPformer. Specifically, the local-branch extracts local structural information using a stack of Wide Enhancement Modules, and the global-branch provides the refining global information by Cross Patch Module and Global Convolution Module. Besides, different from self-attention, we use extracted global semantic information to guide modeling dependencies between local and non-local. According to calculating Dual Cross-Attention, the PPformer can effectively restore images with better color consistency, natural brightness and contrast. Benefiting from the proposed dual cross-attention mechanism, PPformer effectively captures the dependencies in both pixel and patch levels for a full-size feature map. Extensive experiments on eleven real-world benchmark datasets show that PPformer achieves better quantitative and qualitative results than previous state-of-the-art methods.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp